Оптимальный оперативный резерв мощности генерирующих агрегатов системы, выбранный с учетом надежности электроснабжения, должен соответствовать минимуму приведенных затрат, включающих наряду с капиталовложениями и эксплуатационными расходами на дополнительно вводимые агрегаты также и математические ожидания ущерба от недоотпуска электроэнергии потребителям вследствие дефицита мощности. Для минимизации приведенных затрат необходимо многократно определять математическое ожидание ущерба У при вариациях количества и типов дополнительно вводимых агрегатов. Однако расчеты могут быть значительно сокращены, если пренебречь аварийными и плановыми простоями агрегатов дополнительно вводимой мощности ΔΡ.
Подобные расчеты были проведены для системы, описанной в § 3.1, но при увеличенных (по сравнению с данными, приведенными в табл. 3.1) коэффициентах вынужденных простоев и длительностях плановых ремонтов агрегатов (табл. 3.4). В качестве исходной была принята установленная мощность агрегатов системы, равная 17 500 МВт (ΔΡ=0). Удельный ущерб от недоотпуска электроэнергии потребителям принимался равным 0,6 руб/(кВт-ч).
В результате расчета получена следующая зависимость между ΔΡ и У:
Номинальная мощность Рном, МВт . | Число n , шт. | Коэффициент вынужденного простоя Кв, отн. ед. | Длительность плановых ремонтов ίп, мес |
20 | 70 | 0,005 | 0,5 |
25 | 64 | 0,02 | 1 |
200 | 10 | 0,04 | 1,8 |
300 | 10 | 0,04 | 1,8 |
500 | 19 | 0,05 | 1,8 |
Определяя в первом приближении затраты на установку и эксплуатацию дополнительно вводимой мощности по выражению
где к0 - удельные капиталовложения; рэ=0,08 - отчисления на амортизацию, ремонт и обслуживание, и построив характеристику З=f(ΔР), можно найти дополнительно вводимую мощность агрегатов, соответствующую минимуму приведенных затрат.
На рис. 3.10 характеристика приведенных затрат дана для двух значений удельных капиталовложений в генерирующие агрегаты: 1 -к0 - 100 руб/кВт; 2-к0 = 60 руб/кВт. Минимум затрат в первом случае обеспечивается при дополнительно устанавливаемой мощности агрегатов 1600 МВт, во втором - 1800 МВт.
Рис. 3.10. Выбор оптимального резерва мощности
Соответствующие величины математического ожидания ущерба от недоотпуска электроэнергии потребителям - 10 и 7 млн. руб. Хотя полученные значения математического ожидания ущерба относительно велики, их уменьшение нецелесообразно, так как затраты на установку и эксплуатацию дополнительной генерирующей мощности сверх оптимальной превышают экономию от снижения математического ожидания ущерба.
Индекс надежности, характеризующий степень удовлетворения спроса на электроэнергию, в рассматриваемых случаях равен 0,99987 и 0,99991, т. е. недоотпуск составляет соответственно 0,013 и 0,009% полной потребности в электроэнергии.
Значительно более сложную задачу представляет выбор оптимальных значений дополнительно установленных генерирующих мощностей в объединении ЭЭС. Здесь минимизируемая функция приведенных затрат может быть записана в виде
В ней не случайно в качестве базового варианта установленных мощностей агрегатов в ЭЭС принят вариант с мощностями, отвечающими условию покрытия баланса электроэнергии. При произвольном выборе базового варианта установленных мощностей условие минимума приведенных затрат может привести к такому распределению агрегатов между системами, при котором не будут выдерживаться необходимые перетоки электроэнергии между ЭЭС.
Это можно показать на примере двух связанных между собой ЭЭС. Предположим, что на рассматриваемом перспективном уровне развития все характеристики нагрузок обеих ЭЭС одинаковы. Также одинаковы и составы агрегатов обеих систем на исходном уровне. Связь между системами сооружается для транспорта электроэнергии из первой системы во вторую. Очевидно, что если не наложить никаких ограничений
на установленную мощность агрегатов в первой системе, то минимуму затрат (3.19) будут соответствовать одинаковые установленные мощности агрегатов в обеих системах, т. е. не будет учтена потребность в транспорте электроэнергии из первой системы во вторую.
Таким образом, при определении оптимальных установленных мощностей в объединении ЭЭС в качестве исходного варианта должен приниматься вариант, отвечающий балансу электроэнергии, и должно выдерживаться условие ΔΡ>0.
В ЭНИН и САНИИЭ разработаны программы, позволяющие выбирать оптимальные резервы генерирующей мощности и пропускные способности межсистемных связей. Результаты их проверки на ряде относительно простых схем энергообъединений приведены в [20]. Там же отмечается, что недостаточное быстродействие ограничивает область их применения лишь исследовательскими и методическими задачами.
В СЭИ СО РАН в 1989 г. разработаны математическая модель и программа для оптимизации резерва мощности в многоузловой модели ЭЭС с древовидной конфигурацией связей между узлами. Оптимизация ведется по критерию минимума затрат, в которых наряду с затратами на увеличение установленной мощности входит и математическое ожидание ущерба от недоотпуска электроэнергии потребителям вследствие дефицита мощности [21].
В модели учитываются суточные графики нагрузки зимнего и летнего рабочих дней, случайные отклонения нагрузки от графиков, аварийные и плановые простои генерирующих агрегатов, ограничения по продолжительности работы гидроаккумулирующих станций, а также ограничения по пропускной способности межсистемных связей. При этом предполагается, что исходная установленная мощность тепловых электростанций выбрана по условию покрытия графиков нагрузки энергией в расчетном маловодном году.