Содержание материала

Электропривод машин, применяемых на строительстве или на предприятиях строительной индустрии, может быть ручным неавтоматизированным или автоматизированным.
Неавтоматизированным называют электропривод, управление которым при всех режимах работы производят аппаратами ручного управления.
Автоматизированным электроприводом называют такой, в котором управление переходными режимами — пуском, регулированием скорости, торможением, остановкой и т. п. — производят автоматически, после того, как подан первый командный импульс.
В настоящее время на строительных машинах широко применяют релейно-контакторное управление электроприводами, осуществляемое электромагнитными контакторами, реле и командоаппаратами.
Электрической схемой называют чертеж, показывающий функциональные, электрические, магнитные и другие связи между частями электрической установки. Объем и характер сведений, содержащихся в электрической схеме, определяются ее назначением.
Схемы электрических устройств трехфазного тока могут быть трехлинейными и однолинейными.  На трехлинейных схемах каждый провод вычерчивается отдельно, на однолинейных — три провода трехфазной проводки изображают одной линией. Иногда на проводах однолинейных схем делаются черточки, количество которых соответствует количеству проводов. Различают схемы первичной и вторичной коммутации. На схемах первичной коммутации показывают электрические машины и аппараты, шины и провода, т. е. элементы и электрические цепи электроустановки, по которым проходит поток передаваемой и распределяемой электроэнергии. На схемах вторичной коммутации показывают вспомогательные цепи: управления, сигнализации, измерения, защиты и т. п. Электрические схемы подразделяются на принципиальные и монтажные. 

Рис. 13.6. Элементная схема управления электродвигателя с помощью магнитного пускателя
Принципиальные схемы обычно выполняют однолинейными для указания основных принципиальных данных, характеризующих электроустановку: мощность электромашин, принятые способы управления ими, применяемые при этом приборы измерения и т. п.
Существенные особенности имеют принципиальные схемы вторичной коммутации, в частности схемы управления и сигнализации в устройствах автоматизированного электропривода машин и механизмов. Эти схемы выполняются в виде так называемых элементных или развернутых схем, в которых приборы и аппараты изображены не как единое целое, а разобранными на составные элементы; катушки электромагнитов, главные контакты, вспомогательные блок-контакты, кнопки управления и т. п. Каждый элемент показывают отдельно и ставят в ту электрическую цепь, в которой он действует. На рис. 13.6 приведена элементная схема управления электродвигателем при помощи магнитного пускателя.  Схема дана в двух вариантах: а — в совмещенном виде с показом силовых цепей и цепей управления и сигнализации; б — развернутая схема только цепей управления и сигнализации. Сложные схемы вторичной коммутации, как правило, изображают именно таким образом: все элементы располагают между двумя параллельными линиями, изображающими источник питания вторичных цепей, в данном случае две фазы трехфазной сети (могут быть также фаза и нуль четырехпроводной сети трехфазного тока или два полюса сети постоянного тока). В обозначениях на схеме все элементы одного аппарата имеют общую первую букву — на указанной схеме буква П — пускатель. На схеме рис. 13.6 кнопка «пуск» в положении «не включено», электродвигатель не работает, горит зеленая сигнальная лампа Лзел, питаемая через размыкающий в нормальном положении замкнутый контакт пускателя ПК2. При нажатии кнопки «пуск» замыкается цепь катушки электромагнита пускателя ПК, замыкаются главные контакты пускателя в цепи электродвигателя П — двигатель начинает работать, одновременно замыкается блок-контакт ПК1 и размыкается блок-контакт ПК2, в результате чего зеленая лампа гаснет, загорается красная, сигнализируя о том, что электродвигатель находится в работе. Кнопку «пуск» можно отпустить; она вернется в свое исходное положение, контакты ее разомкнутся, но ток в цепи управления будет по-прежнему проходить через катушку контактора, так как блок-контакт ПК1 теперь замкнут и создает обход цепи тока (принято говорить, что блок-контакт шунтирует кнопку «пуск»).
Для остановки электродвигателя достаточно нажать кнопку «стоп». Контакты ее разомкнутся, цепь тока, питающего катушку электромагнита контактора пускателя, разорвется, якорь электромагнита под действием пружины отойдет от сердечника, разрывая при этом главные контакты и блок-контакт. Электродвигатель останавливается. В случае перегрузки работающего электродвигателя тепловые реле 1РТ и 2РТ, нагреватели которых включены в силовую цепь электродвигателя, размыкают свои контакты 1РТК и 2РТК, включенные в цепь управления; контактор пускателя отключается, электродвигатель останавливается. В случае короткого замыкания в электродвигателе мгновенно сгорают плавкие вставки предохранителей, отключая двигатель от сети. Магнитный пускатель отключает также электродвигатель от сети при исчезновении напряжения или понижении его ниже 50—70% номинального (электромагнит контактора при этих условиях не может удержать якорь в притянутом к сердечнику положений). Так же читаются и более сложные развернутые схемы.
Монтажные электрические схемы предназначены для использования при изготовлении отдельных устройств, а также для наладки и эксплуатации электрических установок. Монтажные схемы показывают все электрические соединения между выводами отдельных аппаратов данного устройства, а также марку, сечения, способ прокладки проводов, которыми выполняются соединения. Внутренние соединения аппаратов, составляющих устройство, показываются при необходимости.
Основные положения правильного начертания полных принципиальных схем сводятся к следующему:
а) на схеме изображаются рабочие элементы всех аппаратов, входящих в нее;
Таблица 13.2
Некоторые условные обозначения в электрических схемах управления электроприводами
(выдержки из ГОСТ 2725—68, 2727—68, 2728—68, 2730—68, 2732—68)


Наименование

Обозначение по ГОСТу

1. Катушка индуктивности, дроссель без сердечника

2. Дроссель с ферромагнитным сердечником

8. Вентиль полупроводниковый

4. Сопротивление нерегулируемое

5. Сопротивление регулируемое

6. Сопротивление, регулируемое без разрыва цепи

7. Конденсатор нерегулируемый. Сопротивление емкостное нерегулируемое

8. Конденсатор регулируемый. Сопротивление емкостное регулируемое

9. Обмотка реле, контактора и магнитного пускателя. Общее обозначение

б) отдельные элементы различных аппаратов размещаются не в соответствии с их действительным (территориальным) размещением, а исключительно с точки зрения последовательности действия, наглядности схемы и удобства общей обозреваемости;
в) все элементы одного и того же аппарата обозначаются одинаковыми буквами и цифрами; для отличия разных элементов одного н того же аппарата вводятся различные графические символы;
г) все главные (силовые) цепи вычерчиваются толстыми линиями, а цепи вспомогательные — тонкими;
д) все элементы аппаратов, входящих в схему, изображаются в нормальном положении. Нормальным условно принято считать такое положение, при котором обмотки (катушки) аппаратов не обтекаются током.

В соответствии с этим, участвующие в схеме контакты делятся на замыкающие (з. к.), размыкающие (р. к.) и переключающие (п. к.). При разработке схемы следует учитывать, что при обтекании током обмотки какого-либо аппарата или реле все управляемые ими контакты изменяют свое положение.
В табл. 13.2 приведены основные наиболее часто применяемые условные обозначения элементов аппаратов. В обозначениях контактов условно принято, что при механическом и электрическом воздействии на аппарат (т. е. при переходе аппарата из нормального положения в рабочее) подвижные части контактов движутся сверху вниз или слева направо.
Дальше приводятся примеры схем неавтоматизированного и автоматизированного управления электроприводами строительных машин.
В системах неавтоматизированного электропривода переключения в цепях двигателей осуществляются с помощью аппаратуры ручного управления. Для этой цели используются рубильники, пакетные выключатели, воздушные автоматы, а также контроллеры и другие аппараты.
 Продолжение табл. 13.2

При повороте контроллера в направлении «вперед» замыканием контактов К I и К III соединяется провод Л1 с клеммой двигателя С3 и замыканием контактов KV и KVI — провод Л11 с зажимом С1. При повороте контроллера в направлении «назад» замыканием контактов ΚΙ и КН соединяются Л11 и 2С1 и замыканием KIV и KVI соединяются Л31 и С3. Отключение двигателя производится поворотом контроллера в нулевое положение. Двигатель останавливается также при разрыве цепи аварийного выключателя АВ или при наезде на один из конечных выключателей. При снижении напряжения линейный контактор отпадает и также отключается двигатель от сети (нулевая защита). Схема после этого может быть включена в работу лишь предварительным возвращением контроллера в нулевое положение (нулевая блокировка). Защита двигателя и цепей управления осуществлена плавкими предохранителями и максимальным реле.
Управление неавтоматизированным электроприводом с двигателями переменного и постоянного тока небольшой мощности часто ограничивается включением и отключением вручную пускового аппарата; для ограничения пусковых токов двигателей средней и большой мощности применяются реостаты, а для изменения скорости и направления вращения — контроллеры. Из способов управления такими электроприводами наиболее сложным является способ с применением контроллера.
Схема управления одиночным двигателем с короткозамкнутым ротором с помощью контроллера НТ-53 приведена на рис. 13.7.
В нулевом положении контроллера при замкнутом рубильнике Р кнопкой КР (пусковая кнопка) производится включение линейного контактора Л (создается вспомогательная цепь 11—12— 1—2—14—21). Затем кнопка КР может быть отпущена, и ток будет протекать по параллельной цепи 12—18—5—4— 2—14 —15—16— 21 или 11—18 —3—4 —2—14—15— 16—21. Если механизм не находится в одном из крайних предельных положений, то возможно движение двигателя в обоих направлениях; если же один из конечных выключателей (КВ или КН) разомкнут, то движение возможно лишь в одном направлении, так как при разомкнутом КВ разрывается цепь 18—5—4, а при разомкнутом КН — цепь 18—3—4.  

Рис. 13.7. Схема управления, асинхронным электродвигателем с короткозамкнутым ротором с помощью контроллера НТ-53

Вся защитная аппаратура, а именно: линейный контактор Л, однополюсное максимальное электромагнитное реле РМО, предохраняющее привод от коротких замыканий, кнопка КР, рубильник Р и плавкие предохранители ПР1 и ПР2 — собраны на одной защитной панели. Параллельно двигателю может быть включен тормозной магнит или электрогидравлический толкатель. В некоторых случаях (тихоходные механизмы со скоростью ниже 30 м/мин) тормозные магниты могут отсутствовать.
В системах автоматического управления электроприводами выполняются весьма разнообразные операции. К основным функциям систем автоматического управления электроприводами можно отнести следующие: пуск электродвигателей в ход, регулирование скорости вращения, реверсирование, торможение и остановка электродвигателей; защита электродвигателей и приводимых ими механизмов от различного рода перегрузок и аварийных режимов; осуществление определенной последовательности операций; сигнализация состояния системы электропривода; автоматическая стабилизация скорости и других параметров электропривода; синхронизация движения отдельных элементов производственных механизмов.
К простейшим схемам автоматического управления электроприводами относятся управление ими с помощью магнитных пускателей. Схема управления асинхронного двигателя с короткозамкнутым ротором с помощью нереверсивного магнитного пускателя приведена на рис. 12.13 и там же приведено описание его действия.
На рис. 12.14 представлена схема управления электродвигателем при помощи реверсивного магнитного пускателя.
Более сложные схемы автоматизированного электропривода строятся на основе принципов управления электродвигателями; в функциях времени, скорости, тока, пути. Причем в зависимости от принятого принципа выбирают соответствующие схемы и аппараты. Как пример, приводим на рис. 13.8 схему управления электродвигателем с фазным ротором в функции тока. Схемой не предусматривается реверсирования и электрического торможения. Настройка реле ускорения 1РУ, 2РУ и ЗРУ производится таким образом, чтобы токи, при которых соответствующие реле отключаются, удовлетворяли неравенству
Для пуска электродвигателя нажимается кнопка «пуск», вследствие чего включается контактор КЛ, который подает питание на статор электродвигателя, своим замыкающим блок-контактом (з. б. к.) КЛ он шунтирует пусковую кнопку.
Через з. б. к. КЛ получает питание реле РБ, контакты которого, замыкаясь, подсоединяют к сети цепь катушек контакторов ускорения. Однако контакторы ускорения при этом не включаются немедленно, так как размыкающий контакт (р. к.) 1РУ будет открыт до тех пор, пока пусковой ток в роторной цепи не снизится до величины, соответствующей уставке реле 1РУ. После того как контакт 1РУ закроется, сработает контактор ускорения 1У и зашунтирует своими силовыми контактами первую ступень сопротивления в роторной цепи. Аналогично будет работать реле ускорения 2РУ и ЗРУ при меньших уставках тока и соответственно включатся контакторы ускорения 2У и ЗУ, которые выведут вторую и третью ступени сопротивления в роторной цепи, после чего двигатель начнет работать с полной скоростью (естественная характеристика).
тактов реле ускорения, возможной при значениях токов в катушках реле, близких к токам уставок.


Рис. 13.8. Схема управления асинхронным двигателем с контактными кольцами в функции тока

Рис. 13.9. Схема управления асинхронным двигателем с динамическим торможением
В рассматриваемой схеме предусмотрено шунтирование р. к. реле ускорения блок-контактами 1У, 2У, 3У во избежание вибрации, необходимой для того, чтобы ток в роторной цепи достиг значения, при котором реле ускорения открыли бы свои р. к.

На рис. 13.9 приведена схема автоматического управления асинхронным электродвигателем с динамическим торможением.
Динамическое торможение электродвигателя с короткозамкнутым ротором осуществляется включением обмотки статора двигателя в сеть постоянного тока: при этом магнитный поток, создаваемый постоянным током, взаимодействуя с током ротора, создает тормозной момент. Для этого замыкают рубильники (см. схему). Кнопкой «пуск» подается напряжение на катушку контактора КЛ, и электродвигатель включается в сеть; при этом з. б. к. КЛ замыкает цепь питания катушки реле времени РВ, присоединяя ее к сети постоянного тока.
При включении катушки реле РВ з. к. РВ мгновенно замыкаются в цепи катушки К, но включению контактора К препятствуют разомкнутые р. б. к. КЛ.
Торможение двигателя Д начинается после отключения последнего нажатием кнопки «стоп». При этом: а) катушка КЛ теряет питание и р. к. КЛ замыкается, включая катушку контактора торможения К', б) катушка реле РВ обесточивается из-за размыкания з. б. к. КЛ и з. к. РВ размыкается с выдержкой времени, по истечении которого происходит автоматическое отключение электродвигателя от сети постоянного тока.
Включению контактора КЛ во время торможения препятствует р. к. К, установленные в цепи питания катушки КЛ.
Сопротивление rт предназначается для ограничения тока намагничивания.
Для торможения электродвигателей в некоторых случаях используется механический колодочный тормоз, управляемый электромагнитом.
Электромагнит получает питание одновременно с двигателем; усилие притяжения якоря преодолевает силу сопротивления пружины тормоза и освобождает колодки, сжимающие шкив двигателя. При отключении электродвигателя катушка электромагнита также обесточивается и тормоз под действием пружины, освобождаемой при опускании якоря, способствует остановке двигателя.
Дистанционное автоматизированное управление сложными электроприводами, в том числе приводами по системе Г-Д (генератор-двигатель, см. § 8.7), применяемыми в механизмах крупных строительных машин, осуществляется с помощью комплектных устройств, называемых станциями управления. Такая станция состоит из отдельных аппаратов управления и защиты: контакторов, автоматов, реле, плавких предохранителей, сопротивлений и др., смонтированных на изоляционных плитах и электрически связанных между собой по той или иной схеме. Станции управления (прежнее название — магнитные станции) поставляются промышленностью в готовом смонтированном виде. Для переключения цепей контакторов станций управления служат или специальные контроллеры облегченного типа, называемые командоконтроллерами, или другие командные аппараты (например, кнопки управления). Комплект из станции управления и командоконтроллера к ней носит название магнитного контроллера.
На рис. 13.10 в качестве примера приведена упрощенная принципиальная схема контакторного управления (регулирования скорости) электропривода по системе Г-Д. Для увеличения напряжения, подаваемого генератором к двигателю, служат контакты КЗ и К4 в цепи обмотки возбуждения (ОВГ) генератора (при их замыкании напряжение и вместе с ним скорость вращения двигателя увеличиваются). Дополнительное регулирование скорости двигателя может производиться c помощью контактов К1 и К2 в цепи возбуждения его обмотки. Изменение направления вращения двигателя достигается изменением направления напряжения генератора переключением контактов IB, 2В (вперед) и 1Н и 2И (назад).
Следует отметить, что электропривод по системе ГД c каждым годом все больше вытесняется такой системой привода, где регулируемое в широких пределах напряжение постоянного тока получается не от машинных преобразователей (двигатель-генераторов), а от управляемых выпрямителей (см. § 11.8). Если для этих целей используется Ионный выпрямитель — на тиратронах или управляемый ртутный, —

то электропривод называют ионным; если же применяется полупроводниковый выпрямитель — на управляемых кремниевых вентилях — тиристорах, то привод называют тиристорным.
В строительстве в последние годы начали применять тиристорный электропривод для механизмов крупных машин. Такой привод по сравнению с приводом по системе Г-Д имеет меньшие размеры и вес. Кремниевые вентили — тиристоры весьма надежны в эксплуатации и не требуют особого ухода. Недостатком тиристорного привода является пониженный коэффициент мощности (cos φ).

Рис. 13.10. Схема системы Г-Д с контакторным управлением
Рис. 13.11. Упрощенная схема тиристорного электропривода

На рис. 13.11 приведена упрощенная принципиальная схема ти· ристорного электропривода. Тиристорный выпрямитель показан работающим по трехфазной «нулевой» (с нулевым выводом) схеме. Между выпрямителем и электродвигателем включен дроссель (для сглаживания пульсаций выпрямленного напряжения).
Управление напряжением на электродвигателе осуществляется специальным устройством, обозначенным на схеме буквами АУ, которое подает напряжение на управляемый электрод, как это указано в § 9.11.