Синхронным называют такой электродвигатель переменного тока, у которого угловая скорость (частота вращения) ротора одинакова с угловой скоростью (частотой вращения) вращающегося поля, т. е. ω=ω0 (п=n0).
При работе синхронного электродвигателя питание статорной обмотки производится переменным током, а роторной — постоянным. Роторная обмотка называется обмоткой возбуждения, а питающий ее постоянный ток — током возбуждения. Взаимодействие магнитных полей ротора и статора создает электромагнитный вращающий момент. Однако, поскольку переменный ток меняет свое направление с частотой 50 периодов в секунду (50 Гц), при включении двигателя ротор не может сразу начать вращение и вибрирует, так как испытывает непрерывные толчки в обе стороны. Для того чтобы можно было запустить синхронный двигатель в ход, его ротор, кроме обмотки возбуждения, снабжают дополнительной пусковой обмоткой (короткозамкнутой или фазной) —с такой обмоткой двигатель включается как обычный асинхронный электродвигатель от полного или пониженного напряжения сети. При достижении двигателем угловой скорости, близкой к синхронной (0,95—0,98ω0), в обмотку возбуждения подается постоянный ток (ток возбуждения), после чего угловая скорость вращения ротора становится одинаковой с угловой скоростью вращающегося поля, двигатель входит в синхронизм и начинает работать в синхронном режиме. При синхронной частоте вращения ротора наличие дополнительной пусковой обмотки не оказывает никакого действия, так как эта обмотка, вращаясь синхронно с магнитным полем, не пересекается магнитными линиями, токи в ней не индуктируются и вращающий момент не создается.
Питание обмотки возбуждения осуществляется от возбудителя — генератора постоянного тока, смонтированного на самом двигателе, или отдельно стоящего возбудительного агрегата — генератора постоянного тока с приводом от асинхронного электродвигателя трехфазного тока. Кроме вращающихся возбудительных агрегатов заводы выпускают статические возбудители из полупроводниковых (тиристорных) выпрямителей. Возбудительные агрегаты для взрывозащищенных машин нефтяных насосных и газокомпрессорных станций должны быть также во взрывозащищенном исполнении или расположены в отдельном невзрывоопасном помещении.
Рис. 6. Схемы пуска и возбуждения синхронных электродвигателей
На рис. 6,а изображена схема питания обмотки возбуждения ОВ синхронного двигателя СД от вращающегося возбудителя В (генератора постоянного тока) с обмоткой возбуждения ОВВ и реостатом возбуждения РВ. При пуске синхронного двигателя вследствие большой частоты вращения электромагнитного поля относительно неподвижного ротора на концах обмотки возбуждения (на кольцах ротора) возникают большие напряжения, опасные для изоляции ротора. Для предотвращения этого обмотку возбуждения перед пуском замыкают на разрядное сопротивление СР, которое отключается контактором КВ1 одновременно с включением постоянного тока двухполюсным контактором КВ2. Для механизмов, не требующих при пуске больших моментов (например, центробежных насосов и вентиляторов), применяют схему без разрядного сопротивления, с глухим подключением возбудителя к обмотке возбуждения (рис. 6,б), а в качестве разрядного используют сопротивление обмотки возбуждения возбудителя ОВВ. На рис. 6,в изображена схема возбуждения от комплектного статического возбудителя с блоком управления БУ. Регулирование тока возбуждения осуществляется реостатом возбуждения РВ. Обмотка возбуждения ОВ получает питание постоянным током от селенового выпрямителя БС.
Рис. 7. Механическая характеристика синхронного электродвигателя
Механическая характеристика синхронного электродвигателя обусловлена его основным свойством — постоянной угловой скоростью (частотой вращения) и представляется в виде прямой линии, параллельной оси моментов. Как видно из рис. 7, механическая характеристика обрывается при М=Мmаx. Это означает, что при колебаниях нагрузки, не превышающих Mmax, значение мгновенной угловой скорости колеблется около средней величины, весьма близкой к ω0. При значительном увеличении момента нагрузки (больше Mmax) двигатель выпадает из синхронизма и останавливается или переходит в асинхронный режим. Во избежание выпадения из синхронизма при случайных толчках нагрузки синхронные двигатели делают такими, что их максимальный момент в 2—2,5 раза больше номинального Mmax=(2:2,5)Мnom.
Пуск синхронного двигателя характеризуется тремя моментами: пусковым Мпуск, необходимым для трогания двигателя с места под нагрузкой; входным Мвх, при входе в синхронизм, т. е. при угловой скорости, близкой к синхронной (0,95-:-0,98ω0), и максимальным Ммах (критическим), при синхронной скорости и номинальных напряжении и токе возбуждения ротора. Минимальные моменты, необходимые для пуска механизмов насосных и компрессорных станций, приведены в табл. 5.
Пуск синхронных электродвигателей может быть осуществлен как от полного, так и от пониженного напряжения, в зависимости от мощности питающей сети. Способы ограничения пускового тока, если прямой пуск недопустим, те же, что и для асинхронных двигателей (включение активных и реактивных сопротивлений и автотрансформаторов в цепь статора).
Минимальные моменты синхронных двигателей, необходимые для пуска механизмов
Статор синхронного электродвигателя, будучи присоединен к сети переменного тока, получает от нее необходимую для намагничивания реактивную мощность. Ротор намагничивается подаваемым в него током возбуждения (постоянным током). При малом токе возбуждения электродвигатель потребляет из сети реактивную мощность, при большом — отдает ее в сеть. В первом случае говорят, что двигатель работает с отстающим коэффициентом мощности, во втором — с опережающим коэффициентом мощности.
Рис. 8. Схемы электродвигателей постоянного тока с последовательным (а), параллельным (б) и смешанным (а) возбуждением
Свойство синхронных электродвигателей отдавать в сеть реактивную мощность используют для компенсации недостающей в сети реактивной мощности, т. е. для улучшения коэффициента мощности сети.