Содержание материала

Назначение и область применения электрических машин

Уровень развития цивилизации во многом определяется количеством энергии, используемой человеком. В настоящее время в наиболее развитых странах на одного человека приходится свыше 10 кВт энергии всех видов. Электрическая энергия среди них составляет наибольшую долю. Это обусловлено замечательными достоинствами электрической энергии перед другими видами энергий:

  • она удобно передается на большие расстояния от мест производства к местам потребления;
  • сравнительно просто и экономично преобразуется в другие виды энергии;
  • легко управляется.

Потребность в электроэнергии непрерывно растет, особенно в настоящий период в связи с ростом автоматизации и созданием технологических процессов, непосредственно использующих электрическую энергию. Электрическая энергия вырабатывается на электрических станциях из энергии органического или ядерного топлива либо энергии движущейся воды и ветра. При помощи паровых, гидравлических или другого рода турбин эти виды энергии преобразуются в механическую энергию вращения, которая затем в электрической машине, называемой генератором, преобразуется в электрическую энергию.
При использовании электрической энергии часто требуется обратное преобразование ее в механическую (привод станков, механизмов, колес и т.п.). Такое преобразование также осуществляется при помощи электрических машин, называемых двигателями.
Передача электрической энергии от мест производства (электрические станции) к местам потребления (узлы нагрузки) осуществляется посредством электрических сетей, основным элементом которых является линия электропередачи (ЛЭП). Экономичность передачи электрической энергии тем выше, чем выше напряжение на линии. Генераторы и двигатели выполнять на большие напряжения нерационально. Обычный уровень напряжения мощных электрических машин составляет 10-20 кВ, а машины массового применения имеют напряжение 380 В, в то время как напряжение на линиях электропередачи достигает 1150 кВ. Поэтому между генераторами на электростанциях и потребителями в узлах нагрузки происходит дополнительное преобразование электрической энергии с целью повышения напряжения, а затем обратного его снижения. Такое преобразование осуществляется с помощью трансформаторов (Тр). В простейшем случае рассмотренный процесс преобразования энергии можно представить схемой, изображенной на рис. 1.1.
Наряду с большой энергетикой электрические машины получили широкое применение в системах автоматического управления и бытовой технике в качестве двигателей исполнительных механизмов либо различного рода электромеханических преобразователей и датчиков.


процесс преобразования энергии

Во всех системах большой или малой мощности, где используются электрические машины, их рабочие свойства во многом определяют поведение и свойства этих систем. Поэтому знание основ теории электрических машин необходимо каждому специалисту, работающему в любой из сфер производства, распределения или потребления электрической энергии.
Данный курс лекций посвящается рассмотрению конструкции основных типов электрических машин, принципу их действия, анализу электромагнитных процессов, связанных с преобразованием энергии в электрической машине, расчету характеристик и режимов работы в различных условиях эксплуатации, а также методам испытаний и определения параметров электрических машин.

Физические законы электромеханического преобразования энергии

Связь между обеими системами в электрической машине

Любая электрическая машина представляет собой электромеханический преобразователь энергии. Она объединяет в себе электрическую и механическую системы. Связь между обеими системами в электрической машине осуществляется посредством магнитного поля (рис. 1.2).

Взаимодействие магнитного поля с электрической и механической системами проявляется, с одной стороны, в появлении ЭДС е в элементах электрической системы и, с другой стороны, в возникновении силы , действующей на элементы механической системы, что и обуславливает электромеханическое преобразование энергии. Процесс такого преобразования подчиняется закону сохранения энергии: изменение энергии, поступающей в электрическую машину со стороны электрической и механической систем, расходуется на изменение энергии магнитного поля и на покрытие потерь, сопровождающих основной процесс преобразования энергии.
Если все потери в электрической машине вынести во внешние цепи, то уравнение баланса полезного преобразования энергии будет иметь вид
. (1.1)
Знак «+» означает, что энергия поступает в электрическую машину из внешней системы, а знак «-» - что энергия отдается электрической машиной во внешнюю систему.
Из этого уравнения следует, что процесс преобразования энергии в электрической машине сопровождается непрерывным изменением энергии магнитного поля. Причиной ее изменения является энергия, поступающая либо из электрической, либо из механической системы.
Если в переменное магнитное поле поместить проводящий контур, то в нем возникнет ЭДС
, (1.2)
где y - потокосцепление контура.
Это явление называется электромагнитной индукцией, а выражение (1.2) представляет собой закон электромагнитной индукции Фарадея. Знак «минус» в формуле для ЭДС е обусловлен инерционным характером магнитного поля: наведенная ЭДС всегда направлена так, что создаваемый ею ток препятствует изменению магнитного поля.
Величина потокосцепления одновиткового контура (рис. 1.3) определяется потоком Ф, пронизывающим площадь S, ограниченную контуром

, (1.3)

где В - магнитная индукция; - длина активной части контура; x - смещение плоскости контура относительно оси магнитного поля.

потокосцепление одновиткового контура

Возможны три случая изменения потокосцепления этого контура:

  • контур неподвижен, поток меняется во времени;
  • контур вращается, поток неизменен;
  • контур вращается и поток изменяется во времени.

Поэтому потокосцепление y является функцией пространственной координаты x и времени t ,
.
Следовательно,
.
Подставляя это выражение в (1.2), получим
, (1.4)
где - скорость пересечения контуром силовых линий поля.
Согласно (1.4) ЭДС е можно представить в виде двух составляющих: трансформаторной ЭДС и ЭДС вращения . С учетом выражения для потокосцепления ЭДС вращения может быть записана в виде
. (1.5)
Обычно знак «-» в выражении (1.5) опускают, а направление ЭДС определяют правилом правой руки: если правую руку расположить так, чтобы силовые линии входили в ладонь, а отогнутый большой палец направить в сторону перемещения проводника относительно поля, то четыре пальца покажут направление ЭДС. Наличие ЭДС вращения в замкнутом контуре всегда связано с обменом энергией между механической и электрической системами. Существование лишь трансформаторной ЭДС указывает на то, что обмена энергией между механической и электрической системами не происходит.
Если контур (рис. 1.3) подключить к электрической системе с напряжением u, то по нему потечет ток, величина которого, согласно закону Ома, определяется выражением
, (1.6)
где R - активное сопротивление контура.
Ток создает свое магнитное поле (рис. 1.4). Результирующее магнитное поле вокруг проводника искажается: с одной стороны проводника поле усиливается, а с другой - ослабляется. Это приводит к появлению силы, действующей в направлении максимального ослабления поля. Практически направление силы определяется правилом левой руки: силовые линии поля входят в ладонь, четыре пальца показывают направление тока, а отогнутый большой палец показывает направление силы. Поскольку в контуре (рис. 1.5) ток по отношению к внешнему полю протекает в разных направлениях, то на контур будет действовать момент


магнитное поле

,
где D - диаметр окружности, вписанной в контур; a - угол, определяющий положение контура в магнитном поле.
Если связать контур еще и с механической системой, то можно осуществить передачу энергии в эту систему из электрической системы или наоборот преобразовать механическую энергию в электрическую.
Без учета потерь величина изменения энергии электрической системы определяется выражением
.
Соответствующее ей изменение энергии механической системы определяется произведением силы на приращение координаты
.
Закон сохранения энергии (1.1) требует, чтобы суммарное изменение энергии равнялось изменению энергии магнитного поля
. (1.7)
Запасенная энергия магнитного поля контура выражается формулой
,
где - индуктивность контура.
Отсюда, учитывая, что ток i задан, получаем
.
Подставляя это выражение в уравнение (1.7) и решая его относительно силы , находим
,
или, с учетом (1.3),
. (1.8)
Соотношение (1.8) определяет взаимодействие магнитного поля с током электрического контура, помещенного в это поле. Данное взаимодействие проявляется в возникновении силы, действующей на контур. Величина силы пропорциональна магнитной индукции В, току контура i и его активной длине .