Явления в асинхронной машине при неподвижном роторе
Физическая сущность явлений в асинхронной машине и трансформаторе имеет много общего, поэтому целесообразно начать изучение асинхронных машин с трансформаторного режима при неподвижном роторе ().
Рассмотрим явления в трехфазной асинхронной машине, полагая, что все величины являются синусоидальными функциями времени, а магнитное поле в воздушном зазоре распределено по гармоническому закону. Высшими пространственными гармониками поля пренебрегаем. Обмотку ротора будем считать фазной. Пусть вначале обмотка ротора разомкнута, а обмотка статора включена в сеть на напряжение (рис. 4.3, а).
Симметричная система токов , протекающих по фазам обмотки статора под действием приложенного напряжения , создает основную гармонику МДС с амплитудой
.
Под действием этой МДС в машине образуется магнитный поток, который обычно разделяют на основной поток Ф, сцепленный с обмотками статора и ротора, и поток рассеяния , сцепленный только с обмоткой статора,
.
Основной магнитный поток наводит в обмотках статора и ротора ЭДС
;
.
Для удобства дальнейшего анализа обмотку ротора приведем к обмотке статора. Приведенные величины, как и в трансформаторе, будем обозначать символами со штрихами. Коэффициент приведения по напряжению определяется как отношение ЭДС и :
.
Появление в формуле для отношения обмоточных коэффициентов обусловлено характером образования магнитного поля в асинхронной машине. В отличие от трансформатора первая гармоника магнитного поля асинхронной машины зависит от конструкции обмотки.
ЭДС и можно также выразить через ток , используя комплексную форму записи величин
,
где - сопротивление намагничивающего контура; , - активная и реактивная составляющие сопротивления намагничивающего контура.
В обмотке статора кроме ЭДС существует еще ЭДС от потока рассеяния . Действующее значение этой ЭДС представляется комплексом
,
где - индуктивное сопротивление рассеяния обмотки статора.
Напряжения, ЭДС и токи фаз обмоток статора и ротора должны удовлетворять уравнениям, которые в комплексной форме записываются аналогично уравнениям трансформатора
(4.1)
Выражая ЭДС , и через ток , получим
(4.2)
где .
Этим уравнениям соответствует схема замещения асинхронной машины с неподвижной и разомкнутой обмоткой ротора (рис. 4.4). Данная схема аналогична схеме замещения трансформатора на холостом ходу. Отличие состоит лишь в соотношении параметров. Наличие воздушного зазора в машине приводит к существенному снижению реактивной составляющей сопротивления намагничивающего контура и, следовательно, к увеличению тока намагничивания. В асинхронных машинах ток намагничивания составляет 20-50% от номинального тока, а в трансформаторе он на порядок меньше. По уравнениям (4.1) можно построить также векторную диаграмму, задав напряжение вектора ЭДС (рис. 4.5). Если совместить эту диаграмму с пространственной диаграммой, то можно получить мгновенные значения фазных напряжений ЭДС и токов, проецируя вращающиеся с угловой скоростью векторы , и на неподвижные оси АВС.
Рассмотрим теперь процессы в асинхронной машине с неподвижным ротором и короткозамкнутой обмоткой ротора (рис. 4.6, а).
При включении обмотки статора на напряжение фазные токи создают основную гармонику МДС с амплитудой
.
Токи ротора , направленные, в соответствии с правилом Ленца, навстречу токам , создадут основную гармонику МДС с амплитудой
.
Число фаз обмотки ротора в общем случае не равно числу фаз обмотки статора . МДС и образуют результирующую МДС , которая создает основной магнитный поток , сцепленный с обеими обмотками.
Связь между этими МДС в комплексной форме определяется уравнением
.
Выражая МДС через соответствующие токи, получим
,
где - ток намагничивания, протекающий по обмотке статора.
Отсюда находим выражение для тока намагничивания :
или
, (4.3)
где - коэффициент приведения обмотки ротора к обмотке статора по току.
Полученное уравнение называется уравнением токов.
Ток намагничивания по определению создает в машине основной магнитный поток Ф, который, сцепляясь с обмотками статора и ротора, наводит в них ЭДС
Кроме основного потока в машине существуют также потоки рассеяния и (рис. 4.6, б). Каждый из этих потоков сцепляется только со своей обмоткой и наводит в ней ЭДС рассеяния и соответственно.
Действующие значения этих ЭДС можно выразить через соответствующие токи в комплексной форме:
С целью упрощения дальнейшего анализа выполним приведение обмотки ротора к обмотке статора, используя соотношения
и .
После приведения получаем
; ,
где - приведенное значение индуктивного сопротивления рассеяния обмотки ротора; - коэффициент приведения обмотки ротора к обмотке статора по сопротивлению.
В соответствии со вторым законом Кирхгофа напряжения, ЭДС и токи обмотки статора и ротора должны удовлетворять уравнениям
(4.4)
где - приведенное значение активного сопротивления обмотки ротора.
Уравнения напряжений (4.4) совместно с уравнением тока (4.3) образуют полную систему уравнений асинхронной машины для анализа установившихся режимов.
Уравнения показывают, что асинхронную машину можно заменить Т-образной схемой замещения (рис. 4.7), аналогичной схеме замещения трансформатора в режиме короткого замыкания.
Таким образом, при неподвижном роторе асинхронная машина работает как трансформатор, в котором электрическая энергия статора за вычетом потерь переходит в ротор, где, не совершая никакой полезной работы, превращается в тепло.