Стартовая >> Архив >> Генерация >> Эксплуатация генераторов

Охлаждение гидрогенераторов - Эксплуатация генераторов

Оглавление
Эксплуатация синхронных генераторов
Элементы конструкции гидрогенераторов
Охлаждение гидрогенераторов
Системы возбуждения
Режимы работы гидрогенераторов
Развитие методов электромагнитного расчета гидрогенераторов
Вспомогательные устройства гидрогенератора
Дефекты статора гидрогенератора
Дефекты ротора гидрогенератора
Техническое обслуживание генераторного оборудования
Остановка агрегата, оборудование в резерве
Ремонты генераторного оборудования
Эксплуатация турбогенераторов
Конструктивные особенности турбогенераторов, вероятные повреждения
Конструктивные особенности ротора турбогенераторов
Система уплотнений вала турбогенераторов
Повреждения ротора турбогенераторов
Системы охлаждения турбогенераторов
Особенности пуска и набора нагрузки турбогенераторов
Нормальные режимы работы турбогенераторов
Турбогенераторы серии ТФ
Турбогенераторы серии ТВМ
Сверхпроводниковые турбогенераторы
Асинхронизированные синхронные генераторы
Турбогенераторы с воздушным охлаждением за рубежом
Диагностическое обслуживание генераторов электростанций
Оценка технического состояния гидрогенераторов
Новые отечественные методы диагностики гидрогенераторов
Новые направления и совершенствование систем диагностики турбогенераторов
Новые методы диагностики турбогенераторов
Экспертные системы диагностики генераторов

При работе ГГ выделяется теплота, представляющая потери, которые возникают при взаимных превращениях механической и электрической энергии. В общем случае к этим потерям относятся джоулевы потери в проводниках, потери на вихревые токи и перемагничивание в магнитных и проводящих массах, потери на трение вращающихся частей и в подшипниках и потери на циркуляцию охлаждающей среды. Все эти потери являются причиной нагревания активных и конструктивных частей генераторов.
Допустимые температуры нагрева, например, обмоток статора и ротора зависят в первую очередь от применяемых изоляционных материалов и температуры охлаждающей среды. Для изоляции класса В допустимая температура нагрева обмотки статора должна находиться в пределах 105, а ротора  130°С. При более теплостойкой изоляции обмоток, например классов F и Н, пределы допустимой температуры нагрева увеличиваются.
В процессе эксплуатации генераторов изоляция обмоток постепенно стареет. Причиной этого являются загрязнение, увлажнение, окисление кислородом воздуха, воздействие электрического поля и электрических нагрузок и т. д. Однако главной причиной старения является ее нагрев. Чем выше температура нагрева изоляции, тем быстрее она изнашивается, тем меньше срок службы Срок службы изоляции класса В при температуре нагрева до 120°С составляет около 15 лет, при нагреве до 140°С - сокращается почти до 2 лет. Та же изоляция при температуре нагрева 105°С стареет значительно медленнее, и срок службы ее увеличивается до 30 лет Поэтому во время эксплуатации при любых режимах работы генератора нельзя допускать нагрева его обмоток свыше допустимых температур. Для того чтобы температура нагрева - не превышала допустимых значений, все генераторы выполняют с искусственным охлаждением.
Большинство ГГ охлаждается воздухом, причем в средних к крупных ГГ применяется система косвенного воздушно-водяного охлаждения с замкнутым циклом вентиляции. Воздух циркулирующий через машину, проходит затем через водяные воздухоохладители, где охлаждается проточной водой, и вновь поступает в машину (рис. 1.7).

Замкнутая система охлаждения гидрогенератора
Рис. 1.7. Замкнутая система охлаждения гидрогенератора;
1  - корпус статора; 2 - сердечник статора; 3 - воздухоохладитель; 4 - обмотка статора; 5 - полюс ротора; 6 -тормоз;  7 - обод ротора; 8 - остов ротора; 9 - верхняя крестовина; 10 - опора статора; 11 - движение охлаждающего воздуха

Замкнутая система вентиляции обеспечивает чистоту воздуха и предотвращает засорение отдельных каналов (в первую очередь вентиляционных каналов статора).
На практике часто применяется частично разомкнутый цикл вентиляции с выпуском горячего воздуха из генератора в машинный зал ГЭС для его обогрева; при этом используется около 20 % расхода воздуха, проходящего через воздухоохладители. Отбор горячего воздуха из ГГ допускается при условии, что исключено засорение машины и предусмотрена подпитка ее чистым свежим воздухом.
В ГГ малой мощности применяется также разомкнутая: система вентиляции, когда воздух, пройдя очистительные фильтры, поступает в закрытую машину, охлаждает ее и затем выбрасывается наружу.
Независимо от мощности в ГГ реализуется принцип автономности системы охлаждения: ротор служит вентилятором, а мощность, затрачиваемая на циркуляцию воздуха, поступает непосредственно с вала гидроагрегата.
По способу подачи воздуха различают радиальные, осевые или аксиальные и радиально-осевые схемы самовентиляции.

При радиальной системе вентиляции воздух поступает в звезду ротора (обычно двумя потоками - сверху и снизу) и под действием  избыточного давления, создаваемого вращающимся ротором, проходит через каналы в ободе ротора, промежутки между полюсами воздушный зазор, каналы сердечника статора, выходит в корпус статора и через отверстия в корпусе - в охладители. Пройдя охладители, воздух по каналам в фундаменте и между лапами верхней крестовины вновь поступает в генератор (рис 1.8). Часть воздуха, минуя ротор, направляется в камеры лобовых частей, откуда частично проходит в каналы статора, частично - на тело статора Во избежание обратного перетекания воздуха из камер лобовых частей за вентилятор ставятся воздухоразделяющие щиты. Обычно применяются центробежные вентиляторы.
Радиальная схема вентиляции
Рис. 1.8 Радиальная схема вентиляции

В последние годы получила развитие схема вентиляции с использованием давления, развиваемого спицами в торцевых зонах.
При чисто аксиальной системе вентиляции воздух поступает в генератор с одной стороны, проходит по нескольким параллельным ветвям - между полюсами, в воздушном зазоре, по продольным каналам и за телом сердечника статора, после чего выходит с другой стороны машины.
При смешанной радиально-аксиальной вентиляции воздух поступает в генератор сверху и снизу и с помощью пропеллерных (осевых) вентиляторов, расположенных на горцах обода ротора, направляется в межполюсное пространство и распределяется по радиальным каналам сердечника статора (рис. 1.9).
Радиально-аксиальная схема вентиляции
Рис. 1.9. Радиально-аксиальная схема вентиляции

Простота и надежность системы само вентиляции используются до тех пор, пока напор, развиваемый ротором, оказывается достаточным для обеспечения нужного расхода воздуха или пока требования повышения энергетических показателей не вынуждают перейти к более интенсивным системам непосредственного и форсированного охлаждения.
В настоящее время реализованы конструктивные схемы непосредственного водяного охлаждения всех основных элементов, в которых выделяются значительные потери: обмоток статора и возбуждения, шинопроводов, сердечников статора и полюсов ротора, демпферной системы. Одни схемы получили широкое распространение, другие применяются ограниченно.
Так, стержень обмотки статора с непосредственным водяным охлажденном выполняется в виде комбинации чередующихся в определенном порядке сплошных и полых изолированных проводников. При этом охлаждающая среда соприкасается непосредственно с медью обмоток, благодаря чему основную часть тепла, выделяемого в меди, отводят, минуя изоляцию и сталь.
Гидравлическая схема обмотки статора достаточно сложна, гидравлические соединения выполняются в соответствии с электрической схемой обмотки, с тем чтобы стержни каждой цепи по ходу воды принадлежали одной параллельной ветви фазы обмотки и находились под максимально близкими потенциалами. В процессе изготовления и эксплуатации обмотка и ее части подвергаются испытаниям на герметичность, прочность и проходимость.
Внешняя система циркуляции воды - дистиллята включает в себя водяные насосы, теплообменники, фильтры механической очистки, магнитные фильтры, ионно-обменный фильтр, водяной бак, регулятор температуры, контрольно-измерительную аппаратуру, средства защиты и сигнализации.
При эксплуатации ГГ с непосредственным водяным охлаждением обмотки статора особое внимание обращается на элементы конструкции водяного тракта обмотки и параметры системы водяного охлаждения.
Циркуляция дистиллята не прекращается во время нахождения ГГ в резерве во избежание окисления внутренней поверхности полых проводников и образования на ней отложений.
Во многих случаях применяются системы охлаждения смешанного типа, в которых для напряженных в тепловом отношении элементов используется непосредственное водяное охлаждение, для других - воздушное. Например, в ГГ Красноярской ГЭС обмотки и шины статора охлаждаются непосредственно водой, обмотки возбуждения имеют форсированное воздушное охлаждение, причем форсирование охлаждения достигается выполнением поперечных каналов в витках катушек полюсов. Остальные элементы конструкции имеют традиционное косвенное воздушное охлаждение.



 
« Эксплуатационные режимы водо-водяных энергетических реакторов   Эксплуатация электростанций, работающих при сверхкритических параметрах »
электрические сети