Сердечники импульсных трансформаторов в подавляющем большинстве случаев изготовляются из кремнистой холоднокатаной ленточной стали. В качестве межлистовой изоляции в сердечниках применяют конденсаторную бумагу, лаковые покрытия, оксидные пленки, нити стеклянного волокна, минеральные порошки и т. п. Недостаток этих покрытий в том, что одни из них не позволяют производить отжиг сердечника после его навивки, а другие не позволяют сердечники после навивки и отжига разрезать на две половины (для создания воздушного зазора), ибо не обладают связующими свойствами. Наиболее удачно необходимые качества сочетаются в эмали. Эмаль, наносимая при навивке на ленту, три отжиге плавится, и при остывании сердечник становится монолитным. При необходимости сердечник можно разрезать электроэрозионным или ультразвуковым методом.
В качестве изоляции обмотки от сердечника и межкатушечной изоляции в низковольтных импульсных трансформаторах обычно применяют лакоткань и бумагу. Трансформатор после изготовления пропитывают лаком, заливают компаундом или смолой для защиты от внешних воздействий. Трансформаторы на напряжении выше 6—10 кВ помещают в трансформаторное масло. На рис. 4-66 показан импульсный трансформатор на 70 кВ, изготовленный в Томском политехническом институте. Этот трансформатор разработан для инжектора бетатрона. В качестве изоляции между катушками в трансформаторе применен плексиглас, что позволило уменьшить паразитную емкость трансформатора и сократить его габариты.
В трансформаторах на напряжения 100 кВ и выше в качестве главной изоляции применяется трансформаторное масло. Твердые диэлектрики, такие как плексиглас и полистирол, служат для фиксации положения обмотки.
Представляет интерес использование в качестве изолирующей и охлаждающей среды в трансформаторах на 400 кВ и выше сжатого газа, например, элегаза. Применение для изоляции сжатого газа позволило бы уменьшить паразитную емкость трансформатора в 2—2,5 раза.
Наиболее широко импульсные трансформаторы применяются в радиотехнических устройствах для повышения напряжения импульсов, модулирующих ламповые генераторы метровых и дециметровых волн и магнетронных генераторов сантиметрового диапазона. Напряжение импульсов в этих устройствах достигает 30—35 кВ.
Рис. 4-66. Импульсный трансформатор на 76 кВ.
Импульсный трансформатор в сочетании с импульсным модулятором представляет собой весьма удобный инструмент для исследования импульсной электрической прочности диэлектриков. Возможность легко изменять в широких пределах частоту повторения и длительность импульсов выгодно отличают его от других типов импульсных генераторов напряжения.
К концам вторичной обмотки импульсного трансформатора подключается активное сопротивление, величина которого выбирается из условия получения оптимальной формы импульса. К части этого сопротивления подключается осциллограф для контроля напряжения и формы импульса.
Все более широкое применение импульсные трансформаторы (до 400 кВ и выше) находят в ускорителях заряженных частиц. Импульсные трансформаторы на 26—66 используются в инжекторах бетатронов. Известно, что с ростом энергии инжектируемых электронов интенсивность лучения бетатрона повышается. После разработки тронных пушек на более высокое напряжение в бетатрон могут найти применение трансформаторы на напряжение до 300 кВ.
В разработанном в Станфордском университете (США) линейном ускорителе для модуляции мощных клистронов используется одновременно 21-импульсный трансформатор на напряжение 400 кВ, причем каждый из них отдает 100 Мвт мощности в импульсе при длительности импульса 2 мксек и частоте повторения 60 Гц.
Рис. 4-67. Импульсный трансформатор на 1 000 кВ.
В Томском политехническом институте разработан импульсный трансформатор на 1 000 кВ (рис. 4-67). Импульсный трансформатор повышает напряжение прямоугольных импульсов длительностью 5 мксек от 100 кВ на первичной обмотке до 1 000 кВ на вторичной обмотке.
Размеры импульсного трансформатора 109X56X92 см, вес около 500 кг. Коэффициент трансформации 10. Входные импульсы напряжения отрицательной полярности (100 кВ) формируются импульсным модулятором с двойной неоднородной искусственной линией. Применение неоднородной линии обусловлено стремлением довести размеры и вес трансформатора до минимально возможных и получить трансформированный импульс с наименьшими искажениями. Номинальная мощность в импульсе 80 Мвт.
Сердечник импульсного трансформатора — неразъемного типа и навит из ленточной стали ЭЗ10. Сердечник составлен из четырех отдельно изготовленных секций. Сечение сердечника 125x130 мм, вес около 200 кг. Конструкция сердечника обеспечивает минимальную длину средней магнитной линии и относительно равномерное распределение индукции по сечению Отклонение индукции от средней величины не более 10%. Сечение ленточной стали 64X0,08 мм. Хотя скорость изменения индукции во времени достигает в данном сердечнике колоссальной вели чины 3х109 гс/сек, а, следовательно, в толще листов наводятся значительной силы вихревые токи, было признано нецелесообразным применять более тонкую сталь ввиду больших технологических трудностей и ее высокой стоимости.
В качестве междулистовой изоляции в сердечнике применена эмаль. Применение эмали позволило сердечник после навивки подвергнуть термообработке и получить хорошие магнитные и механические характеристики, а также высокий коэффициент заполнения сталью (kc= 0,94).
Для увеличения приращения индукции ∆Вс за время действия импульса до 15 кгс применено подмагничивание постоянным током. Ток подмагничивания протекает через первичную обмотку трансформатора в направлении, обратном току импульса. Напряженность поля, создаваемого током подмагничивания, выбрана вдвое большей, чем коэрцитивная сила материала сердечника (Нс≈0,4 э) и равна 1 э.
С целью повысить электрическую прочность главной изоляции между сердечником и обмоткой сердечник в части, свободной от обмотки, защищен электрическими экранами.
Трансформатор имеет две обмотки: первичную и вторичную. Первичная обмотка однослойная, состоит из 26 витков и изготовлена из латунной тонкостенной трубки диаметром 4 мм. Вторичная обмотка имеет 260 витков и расположена в семь слоев. Обмотка изготовлена из латунной трубки диаметром в 6 мм (толщина стенки 0,35 мм.). Для сокращения размеров обмотки и уменьшения паразитных параметров первые 26 витков вторичной обмотки размещены в один слой с первичной обмоткой. Так как сердечник трансформатора неразъемного типа, то обмотка собрана уже на сердечнике. Каждый виток составлен из двух полувитков. В пустотелой вторичной обмотке уложен провод в хлорвиниловой изоляции. Трубка и изолированный от нее провод образуют линию передачи энергии к подогревателю катода электронной трубки. На рис. 4-68 дана электрическая схема импульсного трансформатора.
Рис. 4-68. Электрическая схема импульсного трансформатора на 1 000 кВ.
Напряжение сети с помощью симметрирующего трансформатора Тр-1 повышается до 250 В и передается по вторичной обмотке к понижающему трансформатору Тр-2, который монтируется с конденсаторами С2 в электростатическом экране около катодного блока электронной трубки. На каждом полувитке вторичной обмотки имеется по два отверстия (в плоскости полувитка) диаметром 0,5 мм. При вакуумировании резервуара масло через эти отверстия заполняет свободное пространство между проводом и трубкой, что улучшает охлаждение внутреннего провода и повышает электрическую прочность изоляции.
Способ крепления первичной обмотки и первого слоя вторичной обмотки показан на рис. 4-69. Стержни, на которых смонтированы эти обмотки, изготовлены из плексигласа и имеют развитую поверхность с целью исключения перекрытия по поверхности. Стержни крепятся к сердечнику бандажами из полиамидной жилки.
Остальные 234 витка вторичной обмотки, разбитые на шесть слоев, механически непосредственно не связаны с сердечником и вмонтированы на 36 плексигласовых стержнях, причем второй, третий и четвертым слои монтируются на четырех стержнях, а пятым, шестой и седьмой — на восьми стержнях каждый.
Плексигласовые стержни имеют сильно развитую поверхность в направлениях, по которым возможен разряд. Жесткость катушек обмоток повышена распорными плексигласовыми планками, установленными по периметру катушек между основными стержнями.
Все слои вторичной обмотки соединены между собой таким образом, что напряжение на каждой катушке растет в одном и том же направлении. При таком соединении энергия, запасаемая в междуслойных паразитных емкостях при трансформации импульса, имеет наименьшую величину. Приведенная к первичной обмотке паразитная емкость трансформатора равна 14 000 пф, а индуктивность рассеяния 91 мкгн. На рис. 4-70 дана осциллограмма импульса напряжения на нагрузке трансформатора. Длительность фронта импульса составляет 1,5 мксек.
Рис. 4-69. Фотография импульсного трансформатора на 1 000 кВ в процессе монтажа, иллюстрирующая конструкцию первичной и первого слоя вторичной обмоток.
Рис. 4-70. Осциллограмма импульса на нагрузке импульсного трансформатора на 1 000 кВ; калибровочная частота 500 кГц.