Получение сверхвысоких напряжений от одного трансформатора связано с трудностями и технически целесообразно только для напряжения 500—750 кВ. Испытательные трансформаторы на напряжение 1 Мв в одной установке были сооружены еще 30 лет назад. Несмотря на успехи в изоляционной технике, в последующие годы подобные трансформаторы не строились. Для получения напряжений 500 кВ и выше применяется последовательное соединение нескольких испытательных трансформаторов. Если соединяется последовательно п трансформаторов, то напряжение на конце последней обмотки высокого напряжения при отсутствии нагрузки в цепи будет увеличено в п раз по сравнению с напряжением одного трансформатора. Имеется возможность при соответствующем конструктивном устройстве частично заменить сложную внутреннюю изоляцию трансформатора более простой внешней изоляцией на то же самое напряжение. Распределяя полное напряжение на несколько ступеней и обеспечивая необходимой изоляцией каждую ступень, можно уменьшить вес, размеры и стоимость конструкции. При последовательном соединении испытательных трансформаторов в одном трансформаторе доля активных материалов (медь, железо) сравнительно мала и обычно составляет менее 50% всегда веса трансформатора.
Конструктивное исполнение всего сооружения определяется в значительной мере способом питания первичных обмоток трансформаторов.
Рис. 1-9. Последовательное соединение испытательных трансформаторов с питанием обмоток через переходные трансформаторы.
Если питание каждого трансформатора осуществить самостоятельно от общего источника напряжения, то при заземленных баках вторичные обмотки трансформаторов должны иметь изоляцию от первичных обмоток и от бака на напряжение, возрастающее по ступеням соответственно на Uн. Ясно, что такое конструктивное исполнение сооружения, состоящего из нескольких трансформаторов, неприемлемо, так как требует устройства внутренней изоляции трансформатора последней ступени на суммарное напряжение всех ступеней. Ниже рассматриваются практические пути решения проблемы питания первичных обмоток трансформаторов, работающих в последовательном соединении.
На рис. 1-9 изображена схема последовательного соединения испытательных трансформаторов. Первичная обмотка трансформаторов Тр-2 и Тр-3 питается через специальные переходные трансформаторы ТП-1, ТП-2 и ТП-3. Переходные трансформаторы обычно имеют коэффициент трансформации, равный единице, но изоляция между ними должна быть рассчитана на номинальное напряжение одной ступени последовательного соединения. Изоляция и конструкция основных трансформаторов (Тр-1, Тр-2, Тр-3) одинаковы. Баки и магнитопроводы трансформаторов второй и последующих ступеней должны находиться под напряжением, равным напряжению (относительно земли) предыдущей ступени. Все баки, за исключением первого, должны быть изолированы от земли соответственно на напряжения U2, %U2 и т. д. Переходные трансформаторы по весу и размерам почти не отличаются от основных и должны иметь мощность, равную мощности основного трансформатора одной ступени, включая дополнительно потери в самих переходных трансформаторах.
Нетрудно видеть, что в схеме рис. 1-9 при п последовательно соединенных трансформаторах общее количество всех трансформаторов (основных и переходных) будет равно:
а количество переходных трансформаторов
В схеме рис. 1-9 отношение общего количества необходимых трансформаторов к количеству основных трансформаторов увеличивается враз. Следовательно, в этой
схеме значительно возрастают суммарный вес, стоимость и необходимая площадь для всего сооружения.
В 1956 г. для испытательной лаборатории завода трансформаторного и рентгенотехнического оборудования в Дрездене сооружена установка на напряжение 2 250 кВ и мощность 4 950 ква. Испытательная установка состоит из трех трансформаторов каждый мощностью 1 650 ква и напряжением 6/750 кВ, соединенных последовательно, и из трех переходных трансформаторов мощностью по 1 650 ква и напряжением 6/6 кВ с изоляцией на 750 кВ. Эскиз устройства установки и электрические соединения указаны на рис. 1-10.
Рис. 1-10. Эскиз и схема соединений испытательной установки на 2 250 кВ.
Тр-1 —повышающий трансформатор 6/750 кВ, питаемый от сети 6 кВ; Тр-2-повышающий трансформатор, питаемый через переходной изолирующий трансформатор ТП-1; Тр3-повышающий трансформатор, питаемый через переходные изолирующие трансформаторы TП-2 и ТП-3.
Бак и платформа каждого основного трансформатора соединены со средней точкой своей обмотки высокого напряжения. В связи с этим трансформатор снабжен двумя вводами на напряжение 375 кВ каждый, а баки и платформы всех трансформаторов изолируются от земли соответственно на напряжения 375, 1 125, 1 875 кВ. Установка может быть использована для получения трехфазного напряжения с линейным напряжением 1 300 кВ. Общий вес всего сооружения составляет 250 т.
Питание первичных обмоток последовательно соединенных испытательных трансформаторов может осуществляться от отдельных генераторов. Так же как и в схеме рис. 1-9, испытательные трансформаторы имеют одинаковую изоляцию вторичной обмотки от бака. Первичная обмотка трансформатора первой ступени питается от одного генератора (Г1), первичная обмотка трансформатора второй ступени питается от другого генератора (Г2), изолированного от земли на напряжение первой ступени. Оба генератора имеют общий вал, приводимый во вращение электродвигателем. Часть вала, соединяющая генераторы Г1 и Г2 выполняется из изоляционного материала и должна выдерживать напряжение одной ступени. При п ступенях необходимо иметь п генераторов, соответственно изолированных один от другого и от земли. Указанный способ питания первичных обмоток последовательно соединенных трансформаторов используется при более низких напряжениях по сравнению со схемой рис. 1-9.
На рис. 1-11 дана схема соединений при автотрансформаторном способе питания первичных обмоток последовательно соединенных трансформаторов, когда часть обмотки одного трансформатора используется для питания следующей более высокой ступени. Если — напряжение, необходимое для питания первичной обмотки (низкая сторона), a U2— напряжение вторичной обмотки (высокая сторона), то, как видно из рис. 1-11, при заземлении начала вторичной обмотки первого трансформатора конец вторичной обмотки трансформатора последней ступени (точка А) будет находиться под напряжением относительно земли где п — число ступеней.
Трансформаторы Тр-1, Тр-2, Тр-3 должны иметь три обмотки: первичную обмотку возбуждения аб, вторичную обмотку высокого напряжения бг со средней точкой в, обмотку питания трансформатора следующей ступени гд. В трансформаторе последней ступени Тр-4 третья обмотка отсутствует. В зависимости от исполнения изоляции обмоток трансформаторов их баки могут быть соединены либо с началом вторичной обмотки (точка б), либо с ее средней точкой.
В первом случае вторичная обмотка и обмотка питания следующей ступени изолируются от бака на номинальное напряжение трансформатора U2 и устраивается один ввод на полное напряжение вторичной обмотки, другой ввод — только на напряжение первичной обмотки U1.
Рис. 1-11. Автотрансформаторное питание последовательно соединенных трансформаторов.
Бак трансформатора первой ступени Тр-1 заземляется, а баки трансформаторов последующих ступеней Тр-2, Тр-3, Тр-4 должны быть изолированы от земли на напряжение
где k — порядковый номер трансформатора, считая со стороны высокого напряжения, k=1, 2, 3... ;
n —число ступеней.
Во втором случае все три обмотки трансформатора изолируются от бака на напряжение, а вводы обмоток высокого напряжения рассчитываются на напряжение Баки всех трансформаторов должны быть изолированы от земли на напряжение
Вследствие того, что в схеме рис. 1-11 питание каждого трансформатора более высокой ступени осуществляется через трансформатор предыдущей ступени, суммарная -индуктивность рассеяния больше, чем в схеме питания рас. 1-9. Так как условия работы каждого трансформатора в схеме рис. 1-11 зависят от его места в последовательном соединении, трансформаторы выполняются на разную мощность и имеют неодинаковые значения индуктивностей рассеяния. Указанные факторы приводят к неравномерному распределению полного напряжения по ступеням и значительному падению напряжения в схеме при нормальной нагрузке. Например, когда не принималось никаких мер для снижения индуктивности рассеяния, установка, состоящая из четырех последовательно соединенных трансформаторов по 250 кВ с собственной индуктивностью рассеяния 1,25% у каждого, имела падение напряжения 16,5%.
Рис. 1-12. Схема включения компенсационных обмоток в испытательном трансформаторе.
Индуктивность рассеяния трансформаторов определяется взаимным расположением обмоток. Для снижения индуктивности рассеяния необходимо увеличивать электромагнитную связь между отдельными обмотками трансформатора. С этой целью в трансформаторах иногда устраивают специальные компенсационные обмотки. Если имеются две обмотки 1 и 2 (рис. 1-12), расположенные на разных стержнях магнитопровода, то с целью уменьшения индуктивности рассеяния устраивают две компенсационные обмотки w1 и w2 причем обмотка w1 располагается на стержне обмотки 1, а обмотка w2 располагается на стержне 2. Обмотки w1 и w2 имеют одинаковое количество витков и соединяются одна с другой так, чтобы э. д. с., наводимые в них от основного потока, взаимно компенсировались. Индуктивность рассеяния обмоток 1, 2 в отсутствии обмоток w1 и w2 заменяется суммой, которая вследствие сильной электромагнитной связи обмоток 1, w2 и обмоток 2, w2 меньше величины х1,2. Каждая из компенсационных обмоток обычно имеет число витков, равное числу витков первичной обмотки 1, и, следовательно, их мощность в сумме должна быть нс менее мощности первичной обмотки. В трансформаторах, изготовленных Московским трансформаторным заводом, снижение индуктивности рассеяния достигается расположением первичной обмотки на разных стержнях магнитопровода. Устройство компенсационных обмоток усложняет и удорожает трансформатор.
На рис. 1-13 дан эскиз испытательной установки переменного напряжения 50 Гц на 1 000 кВ и мощность 1 000 ква. Установка состоит из трех последовательно соединенных трансформаторов 2,3/333 кВ. Каждый трансформатор снабжен двумя вводами на напряжение 166 кВ, баки трансформаторов соединены со средними точками вторичных обмоток и изолированы от земли на напряжение 166, 500 и 833 кВ соответственно. Трансформаторы первой и второй ступеней имеют первичную обмотку 1, вторичную обмотку 2, две компенсационные обмотки 3 и обмотку питания следующей ступени 4. Первичная обмотка возбуждения 1, половина вторичной обмотки 2 и одна компенсационная обмотка 3 расположены на одном стержне магнитопровода, а половина вторичной обмотки 2, одна компенсационная обмотка 3 и обмотка питания трансформатора следующей ступени 4 расположены на другом стержне магнитопровода. В трансформаторе последней ступени обмотка питания 4 отсутствует. Следует, однако, заметить, что более рационально снабжать все трансформаторы обмоткой питания; это дает возможность при необходимости увеличивать число единиц в каскаде, т. е. повышать испытательное напряжение. Электрическое соединение обмоток ясно из схемы рис. 1-13. Обмотки у всех трансформаторов изолированы от бака на 166 кВ. В комплект установки включаются измерительные шары диаметром 1,5 м, регулировочный и вспомогательный трансформаторы, комплектное распределительное устройство и пульт управления. Общий вес комплекта установки около 65 т, в том числе вес отдельных трансформаторов по ступеням составляет соответственно 9,7; 8,2; 7,3 г. Установка предназначена для кратковременной работы в открытой атмосфере. Длительность непрерывной работы при полной нагрузке равна 3 ч, затем необходим перерыв в работе в течение 3 ч. При продолжительной непрерывной эксплуатации установка может работать только при 75% номинальной мощности.
Рис. 1-13. Эскиз испытательной установки на 1 000 кВ.
На рис. 1-14 дана фотография установки в монтажном зале завода-изготовителя. На рис. 1-15 показано устройство
испытательной установки на переменное напряжение 1 500 кВ частотой 50 Гц и мощностью 1 500 ква. Установка изготовлена Московским трансформаторным заводом. Тип установки — ИОМК-1500. Три трансформатора 6/500 кВ соединены последовательно. В отличие от установки рис. 1-15 начала обмоток высокого напряжения 2 соединены с баком трансформатора.
Рис. 1-14. Внешний вид установки на 1 000 кВ по схеме рис. 1-12.
Бак трансформатора первой ступени заземлен, другие баки изолированы от земли соответственно на 500 и 1 000 кВ. Каждый трансформатор имеет один ввод на 500 кВ и один на 6 кВ. Трансформаторы первой и второй ступеней имеют первичную обмотку возбуждения 1, вторичную обмотку 2 и обмотку питания трансформатора следующей ступени 3. В трансформаторе последней ступени обмотка питания 3 отсутствует. Во всех трансформаторах изоляция от бака вторичной обмотки 2 и обмотки питания 3 рассчитана на напряжение 500 кВ. Компенсационные обмотки в трансформаторах отсутствуют, а снижение индуктивности рассеяния достигается устройством двух первичных обмоток, соединенных параллельно и расположенных на разных стержнях магнитопровода.
Рис. 1-15. Эскиз испытательной установки на 1 500 кВ.
Обмотка питания и вторичная обмотка также расположены на разных стержнях магнитопровода. Вес установки (без регулировочного и другого вспомогательного оборудования) равен примерно 115, т в том числе вес испытательных трансформаторов соответственно по ступеням составляет 32; 31,5 и 31,5 т. Установка предназначена для кратковременной работы в закрытом помещении. Основные данные испытательных установок, изготовляемых Московским трансформаторным заводом, даны в табл. 1-3. В табл. 1-4 приведены допустимые величины напряжений и токов в зависимости от длительности нагрузки для установки ИОМК-1500.
Таблица 1-3
Основные данные испытательных установок с последовательным соединением трансформаторов
Таблица 1-4
Допускаемые величины напряжений и токов в зависимости от длительности нагрузки для установки ИОМК-1 500
Допускаемые величины | Длительность нагрузки | |||||
15 мин | 30 мин | 1 ч | 2 ч | 24 ч | Длительно | |
Напряжение, кВ . . | 1 500 | 1 500 | 1 350 | 1 200 | 1 000 | 900 |
Ток, а.............................................. | 1,0 | 0,5 | 0,5 | 0,5 | 0,5 | 0,4 |
Испытательные установки переменного напряжения (рис. 1-9, 1-10, 1-13, 1-14), состоящие из трех последовательно соединенных трансформаторов, имеют большую эксплуатационную гибкость. После соответствующих переключений между отдельными трансформаторами трехступенчатые установки могут работать в качестве источников высокого переменного напряжения с частотой 50 Гц в следующих схемах включения;
- Три трансформатора в последовательном соединении с автотрансформаторным 'питанием первичных обмоток
где U2 — напряжение вторичной обмотки одного трансформатора;
Iн — номинальный ток нагрузки.
- Два трансформатора в последовательном соединении с автотрансформаторным питанием первичных обмоток
- Три трансформатора в трехфазном включении
- Два трансформатора в последовательном соединении с параллельным питанием первичных обмоток от одной фазы (конец вторичной обмотки первого трансформатора соединен с началом вторичной обмотки второго трансформатора и общая точка вторичных обмоток трансформаторов заземлена)
- Два трансформатора в параллельном включении
- Три трансформатора в параллельном включении
- Один трансформатор
- Два трансформатора в V-образном соединении с питанием первичных обмоток от разных фаз. Начало вторичной обмотки первого трансформатора соединено с началом вторичной обмотки второго трансформатора и общая точка заземлена.
Использование автотрансформаторного способа питания последовательно соединенных трансформаторов обусловливает различные токи в первичных обмотках трансформаторов, так как энергия для питания трансформаторов последующих ступеней передается через трансформатор преидущей ступени. Это обстоятельство приводит к превышению установленной мощности над мощностью, используемой нагрузкой.
Пусть P1— мощность трансформатора последней ступени, тогда P1=U2ln.
Мощность, которую должен иметь любой k-й трансформатор:
где k=1,2, 3...- порядковый номер трансформатора, считая со стороны нагрузки.
Суммарная установленная мощность всей испытательной установки из п последовательных трансформаторов найдется как
Мощность, используемая нагрузкой:
Отсюда видно, что установленная мощность последовательно соединенных трансформаторов при автотрансформаторном способе питания в (п+1)/2 раз больше полезной мощности, что имеет место, как было показано ранее, 1 для способа питания через переходные трансформаторы рис. 1-9 и 1-10). Однако использование схемы рис. 1-12 5олее целесообразно, так как один трансформатор заданий мощности значительно дешевле, чем несколько трансформаторов, имеющих в сумме ту же мощность, что и в схеме рис. 1-9 и 1-10.
Коэффициент использования установленной мощности равен:
и уменьшается по закону гиперболы с ростом числа ступеней п. Например, при трех трансформаторах η = 0,5, а при п = 5 η = 0,333. Одновременно со снижением коэффициента использования установленной мощности в многоступенчатых установках возрастает суммарная индуктивность рассеяния. Указанные факторы ограничивают количество последовательно соединенных трансформаторов обычно до трех единиц. Так как всегда имеется возможность использовать в работе каждый трансформатор самостоятельно, иногда оправданным оказывается (последовательное соединение четырех-пяти единиц. Например, описана испытательная лаборатория, имеющая пять трансформаторов 350 кВ, которые работают, как правило, самостоятельно, но предусмотрена возможность их последовательного соединения, при котором напряжение на выходе составляет около 1 750 кВ.
Наивысшее напряжение промышленной частоты, полученное в установках последовательного соединения трансформаторов (3 X 750 кВ), составляет 2 250 квдейств или 3 175 квмакс. Такая установка в Научно-исследовательском институте постоянного тока (НИИПТ) в Ленинграде используется в качестве источника переменного напряжения для проведения исследований на опытном участке линии электропередачи напряжением 400—600 кВ. Там же впервые измерены разрядные напряжения при промышленной частоте для электродов «стержень—плоскость» с расстоянием между ними 9 м. При этом расстоянии средний (фиктивный) разрядный градиент потенциала равен 240 кВ 1м. Повышение номинального напряжения линий электропередач в ближайшие годы, по-видимому, потребует сооружения испытательных установок, состоящих из четырех и пяти трансформаторов напряжением 750 кВ каждый.
Установки с последовательно соединенными трансформаторами имеют обычно емкостную нагрузку, которая при испытании кабелей может быть весьма значительной.
При последовательном соединении испытательных трансформаторов, так же как и для отдельных испытательных трансформаторов, иногда производится компенсация емкостного тока подключением параллельно одной из обмоток трансформаторов катушек индуктивности.
В испытательной лаборатории норвежской компании, производящей кабели, сооружена установка переменного напряжения, состоящая из двух трансформаторов 300 кВ и использующая регулируемые индуктивности (реакторы), включенные последовательно в цепь испытания. Реакторы управляются пультом. Установка используется для испытания кабелей переменным напряжением до 600 кВ и имеет мощность 2 400 ква. При номинальной мощности установка может работать непрерывно в течение 30 мин.
Использование регулируемых реакторов настраиваемых в резонанс при последовательном соединении с емкостью кабеля на стороне высокого напряжения, имеет дополнительное преимущество — ток короткого замыкания при пробое кабеля во время испытания снижается до долей номинального тока нагрузки и этим устраняется загорание испытуемых отрезков кабеля.
Регулирование напряжения в первичной сети установок последовательно соединенных трансформаторов, имеющих суммарную мощность 1 000 ква и более, осуществляется либо трансформатором с подвижными обмотками («шуб-трансформатор»), либо специальным двигатель-генератором. Устройство трансформатора с подвижными обмотками и принцип его работы рассматриваются в § 1-3.
Регулирование напряжения с помощью двигатель-генератора является технически наиболее совершенным. Синхронный генератор, имея специальные обмотки, поддерживает синусоидальную форму напряжения как при емкостной, так и при индуктивной нагрузках. Регулирование напряжения осуществляется изменением возбуждения генератора. Для обеспечения устойчивой работы генератора особенно при емкостной нагрузке, возбуждение генератора производится от возбудителя с независимым возбуждением. Для вращения генератора используется синхронный двигатель. Мощность генераторов обычно берется несколько выше, чем суммарная мощность испытательной установки. Генераторы применяются как однофазные, так и трехфазные.
Последовательные соединения обмоток высокого напряжения используются также при устройстве измерительных трансформаторов напряжения на 110 кВ и выше. В этом случае наиболее наглядно иллюстрируются преимущества разделения полного напряжения на отдельные ступени с соответствующей изоляцией их. На рис. 1-16 показано изменение веса измерительных трансформаторов напряжения с увеличением их номинального напряжения при различном исполнении трансформаторов. Как видно из рис. 1-16, для трансформатора в одной установке с металлическим баком с увеличением номинального напряжения в 2 раза вес, отнесенный к 1 кВ, увеличивается в 3 раза. Для трансформаторов, выполненных с последовательным соединением и ступенчатым изолированием обмоток высшего напряжения, вес, οтнесенный к 1 кВ, практически остается постоянным с увеличением напряжения.
Рис. 1-16. Изменение веса измерительных трансформаторов напряжения в зависимости от UН при различном исполнении трансформаторов.
1— в последовательном соединении ступеней; 2 — в одной ступени.
На рис. 1-17 дано сравнение размеров и необходимого объема масла у трансформаторов, выполненных в обычной конструкции с вводом 2, и трансформаторов, выполненных в изоляционном (фарфоровом) корпусе с последовательным соединением и ступенчатым изолированием обмоток высокого напряжения 1. Трансформатор в многоступенчатом исполнении на напряжение 230 кВ имеет высоту почти в 2 раза меньше, а объем масла примерно в 10 раз меньше, чем трансформатор обычной конструкции на это же напряжение.
Имеются расчеты, показывающие, что стоимость установки из двух трансформаторов 250 кВ в 2 раза меньше, чем стоимости одного трансформатора на 500 кВ. Установки последовательного соединения занимают большую площадь, но ввиду относительно малого веса отдельных трансформаторов и других составных частей облегчается монтаж всей установки и ее ремонт.
Рис. 1-17. Сравнение размеров измерительных трансформаторов напряжения при их различном исполнении.
Напряжение, кВ | Исполнение трансформатора | Размеры, м | Объем масла, л | |
А | Б | |||
115 | 1 | 2,25 | 0,7 | 117 |
2 | 3,35 | 1,0 | 605 | |
230 | 1 | 3,58 | 0,8 | 285 |
2 | 6,0 | 1,7 | 3030 |