Глава четвертая
ПРЕОБРАЗОВАНИЕ ОДНИХ ВИДОВ ЭНЕРГИИ В ДРУГИЕ
Как уже говорилось в гл. 1, человечество нуждается в энергии для самых различных целей. Создание комфортных условий в жилищах и производственных помещениях, приготовление пищи, промышленность, сельское хозяйство, транспорт, связь — все эти сферы жизни и деятельности человека требуют разнообразных форм энергии. Очень часто бывает так, что мы получаем энергию от первичных источников в одном виде, а для потребления она нужна в другом. Поэтому следует познакомиться с законами, управляющими преобразованиями энергии.
ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
Современная физика знает много видов энергии, связанных с движением или различным взаимным расположением самых разнообразных материальных тел или частиц, например, всякое движущееся тело обладает кинетической энергией, пропорциональной квадрату его скорости. Эта энергия может изменяться, если скорость тела будет возрастать или убывать. Тело, приподнятое над землей, имеет потенциальную гравитационную энергию, изменяющуюся при изменении высоты тела. Неподвижные электрические заряды, находящиеся на некотором расстоянии друг от друга, обладают потенциальной электростатической энергией в соответствии с тем, что по закону Кулона заряды либо притягиваются (если они разного знака), либо отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними. Кинетической и потенциальной энергией обладают и молекулы, и атомы, и частицы, их составляющие — электроны, протоны, нейтроны и т. д. В зависимости от характера движения и природы сил, действующих между этими частицами, изменение энергии в системах таких частиц может проявляться в форме механической работы, в протекании электрического тока, в передаче теплоты, в изменении внутреннего состояния тел, в распространении электромагнитных колебаний и т. п.
Уже более 100 лет назад в физике был установлен фундаментальный закон, в соответствии с которым энергия не может исчезать или возникать из ничего. Она может лишь переходить из одного вида в другой. Этот закон называется законом сохранения энергии. В трудах А. Эйнштейна этот закон получил существенное развитие. Эйнштейн установил взаимопревращаемость энергии и массы и тем самым расширил толкование закона сохранения энергии, который теперь в общем случае формулируется как закон сохранения энергии и массы. В соответствии с теорией Эйнштейна всякое изменение энергии тела Δm связано с изменением его массы Δm формулой
(4.1) где с — скорость света в вакууме, равная 3-108 м/с.
Из этой формулы, в частности, следует, что если в результате какого-либо процесса масса всех тел, участвующих в процессе, уменьшится на 1 г, то при этом выделится энергия, равная 9-1013 Дж, что эквивалентно 3000 т условного топлива. Эти соотношения имеют первостепенное значение при анализе ядерных превращений. В большинстве же макроскопических процессов изменением массы можно пренебречь и говорить лишь о законе сохранения энергии.
Проследим за преобразованиями энергии на каком-нибудь частном примере. Рассмотрим всю цепочку преобразований энергии, необходимую для изготовления какой-либо детали на токарном станке (рис. 4.1). Пусть исходная энергия 1, количество которой мы примем за 100%, получена за счет полного сжигания некоторого количества природного топлива. Следовательно, для нашего примера 100% исходной энергии содержится в продуктах сгорания топлива, находящихся при высокой (около 2000 К) температуре. Продукты сгорания в котле электростанции, охлаждаясь, отдают свою внутреннюю энергию в виде теплоты воде и водяному пару. Однако по техническим и экономическим причинам продукты сгорания нельзя охладить до температуры окружающей среды. Они выбрасываются через трубу в атмосферу при температуре около 400 К, унося с собой часть исходной энергии. Поэтому во внутреннюю энергию водяного пара перейдет только 95% исходной энергии. Полученный водяной пар поступит в паровую турбину, где его внутренняя энергия вначале частично превратится в кинетическую энергию струн пара, которая затем будет отдана в виде механической энергии ротору турбины.
Рис. 4.1. Схема преобразований энергии при обработке детали на токарном станке.
1 — потеря энергии с уходящими газами; 2 — внутренняя энергия продуктов сгорания; 3 — внутренняя энергия рабочего тела — водяного пара; 4— теплота, отдаваемая охлаждающей воде в конденсаторе турбины; 5 — механическая энергия ротора турбогенератора; 6 — потери в электрогенераторе; 7 — потери в электроприводе станка; 8 — механическая энергия вращения станка; 9 — работа трения, превращающаяся в теплоту, отдаваемую жидкости, охлаждающей деталь; 10 — увеличение внутренней энергии детали и стружки после обработки.
По причинам, о которых будет рассказано в следующем параграфе, только часть энергии пара может быть превращена в механическую энергию. Остальная часть отдается охлаждающей воде при конденсации пара в конденсаторе. В нашем примере мы приняли, что энергия, переданная ротору турбины, составит около 38%, что примерно соответствует положению дел на современных электростанциях. При преобразовании механической энергии в электрическую за счет так называемых джоулевых потерь в обмотках ротора и статора электрогенератора будет потеряно еще около 2% энергии. В результате в электрическую сеть поступит около 36% исходной энергии. Электродвигатель превратит в механическую энергию вращения токарного станка только часть подведенной к нему электроэнергии. В нашем примере около 9% энергии в виде джоулевой теплоты в обмотках двигателя и теплоты трения в его подшипниках будет отдано в окружающую атмосферу. Таким образом, к рабочим органам станка окажется подведенным только 27% исходной энергии. Но и на этом злоключения энергии не заканчиваются. Оказывается, что подавляющая часть энергии при механической обработке детали расходуется на трение и в виде теплоты отводится с жидкостью, охлаждающей деталь. Теоретически на то, чтобы из исходной заготовки получить нужную деталь, хватило бы лишь весьма малой доли (в нашем примере условно принято 2%) исходной энергии.
Из рассмотренного примера, если его считать достаточно типичным, можно сделать по крайней мере три очень полезных вывода.
Во-первых, на каждой ступеньке преобразования энергии какая-то часть ее теряется. Это утверждение не следует понимать как нарушение закона сохранения энергии. Теряется она для того полезного эффекта, ради которого соответствующее преобразование осуществляется. Полное количество энергии после преобразования остается неизменным.
Рис. 4.2. Схема для определения к. п. д. устройства, преобразующего энергию.
Если в некоторой машине или аппарате осуществляется процесс преобразования и передачи энергии, то эффективность этого устройства обычно характеризуют коэффициентом полезного действия (к. п. д.). Схема такого устройства показана на рис. 4.2. Пользуясь обозначениями, приведенными на рисунке, к. п. д. можно определить как
В прошлом, когда законы превращения энергии еще не были известны, мечтой людей было создание так называемого вечного двигателя — устройства, которое совершало бы полезную работу, не затрачивая никакой энергии. Такой гипотетический двигатель, существование которого нарушало бы закон сохранения энергии, сегодня называют вечным двигателем первого рода в отличие от вечного двигателя второго рода, который будет рассмотрен в следующем параграфе. Сегодня, разумеется, никто не принимает всерьез возможность создания вечного двигателя первого рода.
Во-вторых, все потери энергии в конечном итоге превращаются в теплоту, которая отдается либо атмосферному воздуху, либо воде естественных водоемов.
В-третьих, в конечном счете люди полезно используют лишь малую часть той первичной энергии, которая была затрачена для получения соответствующего полезного эффекта.
Это особенно очевидно при рассмотрении затрат энергии на транспорт. В идеализированной механике, не учитывающей сил трения, перемещение грузов в горизонтальной плоскости не требует затрат энергии. В реальных условиях вся энергия, потребляемая транспортным средством, затрачивается на преодоление сил трения и сил сопротивления воздуха, т. е. в конечном счете вся энергия, потребляемая на транспорте, превращается в теплоту. В этом отношении любопытны следующие цифры, характеризующие работу перемещения 1 т груза на расстояние 1 км различными видами транспорта:
Таким образом, один и тот же полезный эффект может быть достигнут при воздушном транспорте за счет в 60 раз больших затрат энергии, чем при железнодорожном. Конечно, большая затрата энергии дает существенную экономию во времени, но даже и при одинаковой скорости (автомобиль и поезд) затраты энергии различаются в 4 раза. Этот пример говорит о том, что люди часто поступаются энергетической экономичностью ради достижения иных целей, например комфорта, скорости и т. п. Как правило, сама по себе энергетическая экономичность того или иного процесса нас мало интересует — важны суммарные технико-экономические оценки эффективности процессов. Но по мере удорожания первичных источников энергии энергетическая составляющая в технико-экономических оценках становится все более важной.