Стартовая >> Книги >> Оборудование >> Электрические машины

Электрические машины

Оглавление
Электрические машины
Основные электромагнитные схемы электрических машин
Устройство многофазных обмоток
Магнитное поле и МДС многофазных обмоток
Электродвижущие силы, индуктируемые в обмотке
Асинхронные машины
Явления в асинхронной машине при неподвижном роторе
Явления в асинхронной машине при вращающемся роторе
Уравнения, схема замещения и векторная диаграмма
Энергетическая диаграмма асинхронного двигателя
Механическая характеристика асинхронной машины
Статическая устойчивость асинхронной машины
Экспериментальное исследование асинхронных двигателей
Рабочие характеристики асинхронного двигателя
Двигатели с улучшенными пусковыми свойствами
Пуск асинхронных двигателей
Регулирование частоты вращения асинхронных двигателей
Несимметричные режимы работы асинхронных двигателей
Однофазные асинхронные двигатели
Генераторный режим асинхронной машины
Трансформаторный режим асинхронной машины
Синхронные машины
Магнитное поле синхронной машины при холостом ходе
Расчет магнитной цепи синхронной машины при хх
Магнитное поле синхронной машины при нагрузке
Приведение МДС обмотки статора к МДС возбуждения
Уравнения напряжений и векторные диаграммы
Уравнения векторные диаграммы с учетом насыщения
Работа на автономную нагрузку
Параллельная работа синхронных машин
Включение генератора в сеть
Регулирование активной мощности синхронной машины
Регулирование реактивной мощности синхронной машины
Угловая характеристика синхронной машины
Статическая устойчивость синхронной машины
U-образные характеристики
Синхронные двигатели
Синхронные компенсаторы
Несимметричные режимы синхронных генераторов
Внезапное трехфазное кз синхронного генератора
Качания и динамическая устойчивость синхронной машины
Машины постоянного тока
ЭДС обмотки якоря и электромагнитный момент
Магнитное поле машины постоянного тока при нагрузке
Коммутация
Генераторы постоянного тока
Характеристики генераторов с самовозбуждением
Параллельная работа генераторов постоянного тока
Двигатели постоянного тока
Характеристики двигателя постоянного тока
Регулирование частоты вращения

 

 

 

 

 

 

 

Назначение и область применения электрических машин

Уровень развития цивилизации во многом определяется количеством энергии, используемой человеком. В настоящее время в наиболее развитых странах на одного человека приходится свыше 10 кВт энергии всех видов. Электрическая энергия среди них составляет наибольшую долю. Это обусловлено замечательными достоинствами электрической энергии перед другими видами энергий:

  • она удобно передается на большие расстояния от мест производства к местам потребления;
  • сравнительно просто и экономично преобразуется в другие виды энергии;
  • легко управляется.

Потребность в электроэнергии непрерывно растет, особенно в настоящий период в связи с ростом автоматизации и созданием технологических процессов, непосредственно использующих электрическую энергию. Электрическая энергия вырабатывается на электрических станциях из энергии органического или ядерного топлива либо энергии движущейся воды и ветра. При помощи паровых, гидравлических или другого рода турбин эти виды энергии преобразуются в механическую энергию вращения, которая затем в электрической машине, называемой генератором, преобразуется в электрическую энергию.
При использовании электрической энергии часто требуется обратное преобразование ее в механическую (привод станков, механизмов, колес и т.п.). Такое преобразование также осуществляется при помощи электрических машин, называемых двигателями.
Передача электрической энергии от мест производства (электрические станции) к местам потребления (узлы нагрузки) осуществляется посредством электрических сетей, основным элементом которых является линия электропередачи (ЛЭП). Экономичность передачи электрической энергии тем выше, чем выше напряжение на линии. Генераторы и двигатели выполнять на большие напряжения нерационально. Обычный уровень напряжения мощных электрических машин составляет 10-20 кВ, а машины массового применения имеют напряжение 380 В, в то время как напряжение на линиях электропередачи достигает 1150 кВ. Поэтому между генераторами на электростанциях и потребителями в узлах нагрузки происходит дополнительное преобразование электрической энергии с целью повышения напряжения, а затем обратного его снижения. Такое преобразование осуществляется с помощью трансформаторов (Тр). В простейшем случае рассмотренный процесс преобразования энергии можно представить схемой, изображенной на рис. 1.1.
Наряду с большой энергетикой электрические машины получили широкое применение в системах автоматического управления и бытовой технике в качестве двигателей исполнительных механизмов либо различного рода электромеханических преобразователей и датчиков.


процесс преобразования энергии

Во всех системах большой или малой мощности, где используются электрические машины, их рабочие свойства во многом определяют поведение и свойства этих систем. Поэтому знание основ теории электрических машин необходимо каждому специалисту, работающему в любой из сфер производства, распределения или потребления электрической энергии.
Данный курс лекций посвящается рассмотрению конструкции основных типов электрических машин, принципу их действия, анализу электромагнитных процессов, связанных с преобразованием энергии в электрической машине, расчету характеристик и режимов работы в различных условиях эксплуатации, а также методам испытаний и определения параметров электрических машин.

Физические законы электромеханического преобразования энергии

Связь между обеими системами в электрической машине

Любая электрическая машина представляет собой электромеханический преобразователь энергии. Она объединяет в себе электрическую и механическую системы. Связь между обеими системами в электрической машине осуществляется посредством магнитного поля (рис. 1.2).

Взаимодействие магнитного поля с электрической и механической системами проявляется, с одной стороны, в появлении ЭДС е в элементах электрической системы и, с другой стороны, в возникновении силы , действующей на элементы механической системы, что и обуславливает электромеханическое преобразование энергии. Процесс такого преобразования подчиняется закону сохранения энергии: изменение энергии, поступающей в электрическую машину со стороны электрической  и механической  систем, расходуется на изменение энергии магнитного поля  и на покрытие потерь, сопровождающих основной процесс преобразования энергии.
Если все потери в электрической машине вынести во внешние цепи, то уравнение баланса полезного преобразования энергии будет иметь вид
.                                                   (1.1)
Знак «+» означает, что энергия поступает в электрическую машину из внешней системы, а знак «-» - что энергия отдается электрической машиной во внешнюю систему.
Из этого уравнения следует, что процесс преобразования энергии в электрической машине сопровождается непрерывным изменением энергии магнитного поля. Причиной ее изменения является энергия, поступающая либо из электрической, либо из механической системы.
Если в переменное магнитное поле поместить проводящий контур, то в нем  возникнет ЭДС
,                                                                 (1.2)
где y - потокосцепление контура.
Это явление называется электромагнитной индукцией, а выражение (1.2) представляет собой закон электромагнитной индукции Фарадея. Знак «минус» в формуле для ЭДС е обусловлен инерционным характером магнитного поля: наведенная ЭДС всегда направлена так, что создаваемый ею ток препятствует изменению магнитного поля.
Величина потокосцепления одновиткового контура (рис. 1.3) определяется потоком Ф, пронизывающим площадь S, ограниченную контуром

,                                                      (1.3)

где В - магнитная индукция;  - длина активной части контура; x - смещение плоскости контура относительно оси магнитного поля.

потокосцепление одновиткового контура

Возможны три случая изменения потокосцепления этого контура:

  • контур неподвижен, поток меняется во времени;
  • контур вращается, поток неизменен;
  • контур вращается и поток изменяется во времени.

Поэтому потокосцепление y является функцией пространственной координаты x и времени t ,
.
Следовательно,
.
Подставляя это выражение в (1.2), получим
,                                                      (1.4)
где  - скорость пересечения контуром силовых линий поля.
Согласно (1.4) ЭДС е можно представить в виде двух составляющих: трансформаторной ЭДС  и ЭДС вращения . С учетом выражения для потокосцепления ЭДС вращения может быть записана в виде
.                                                (1.5)
Обычно знак «-» в выражении (1.5) опускают, а направление ЭДС определяют правилом правой руки: если правую руку расположить так, чтобы силовые линии входили в ладонь, а отогнутый большой палец направить в сторону перемещения проводника относительно поля, то четыре пальца покажут направление ЭДС. Наличие ЭДС вращения  в замкнутом контуре всегда связано с обменом энергией между механической и электрической системами. Существование лишь трансформаторной ЭДС  указывает на то, что обмена энергией между механической и электрической системами не происходит.
Если контур (рис. 1.3) подключить к электрической системе с напряжением u, то по нему потечет ток, величина которого, согласно закону Ома, определяется выражением
,                                                             (1.6)
где R - активное сопротивление контура.
Ток создает свое магнитное поле (рис. 1.4). Результирующее магнитное поле вокруг проводника искажается: с одной стороны проводника поле усиливается, а с другой - ослабляется. Это приводит к появлению силы, действующей в направлении максимального ослабления поля. Практически направление силы определяется правилом левой руки: силовые линии поля входят в ладонь, четыре пальца показывают направление тока, а отогнутый большой палец показывает направление силы. Поскольку в контуре (рис. 1.5) ток по отношению к внешнему полю протекает в разных направлениях, то на контур будет действовать момент


магнитное поле

,
где D - диаметр окружности, вписанной в контур; a - угол, определяющий положение контура в магнитном поле.
Если связать контур еще и с механической системой, то можно осуществить передачу энергии в эту систему из электрической системы или наоборот преобразовать механическую энергию в электрическую.
Без учета потерь величина изменения энергии электрической системы определяется выражением
.
Соответствующее ей изменение энергии механической системы определяется произведением силы  на приращение координаты
.
Закон сохранения энергии (1.1) требует, чтобы суммарное изменение энергии равнялось изменению энергии магнитного поля
.                                                     (1.7)
Запасенная энергия магнитного поля контура выражается формулой
,
где  - индуктивность контура.
Отсюда, учитывая, что ток i задан, получаем
.
Подставляя это выражение в уравнение (1.7) и решая его относительно силы , находим
,
или, с учетом (1.3),
.                                                             (1.8)
Соотношение (1.8) определяет взаимодействие магнитного поля с током электрического контура, помещенного в это поле. Данное взаимодействие проявляется в возникновении силы, действующей на контур. Величина силы пропорциональна магнитной индукции В, току контура i и его активной длине .



 
« Электрические аппараты и оборудование выше 1000В
электрические сети