Стартовая >> Книги >> Оборудование >> Электрические машины

Генераторный режим асинхронной машины - Электрические машины

Оглавление
Электрические машины
Основные электромагнитные схемы электрических машин
Устройство многофазных обмоток
Магнитное поле и МДС многофазных обмоток
Электродвижущие силы, индуктируемые в обмотке
Асинхронные машины
Явления в асинхронной машине при неподвижном роторе
Явления в асинхронной машине при вращающемся роторе
Уравнения, схема замещения и векторная диаграмма
Энергетическая диаграмма асинхронного двигателя
Механическая характеристика асинхронной машины
Статическая устойчивость асинхронной машины
Экспериментальное исследование асинхронных двигателей
Рабочие характеристики асинхронного двигателя
Двигатели с улучшенными пусковыми свойствами
Пуск асинхронных двигателей
Регулирование частоты вращения асинхронных двигателей
Несимметричные режимы работы асинхронных двигателей
Однофазные асинхронные двигатели
Генераторный режим асинхронной машины
Трансформаторный режим асинхронной машины
Синхронные машины
Магнитное поле синхронной машины при холостом ходе
Расчет магнитной цепи синхронной машины при хх
Магнитное поле синхронной машины при нагрузке
Приведение МДС обмотки статора к МДС возбуждения
Уравнения напряжений и векторные диаграммы
Уравнения векторные диаграммы с учетом насыщения
Работа на автономную нагрузку
Параллельная работа синхронных машин
Включение генератора в сеть
Регулирование активной мощности синхронной машины
Регулирование реактивной мощности синхронной машины
Угловая характеристика синхронной машины
Статическая устойчивость синхронной машины
U-образные характеристики
Синхронные двигатели
Синхронные компенсаторы
Несимметричные режимы синхронных генераторов
Внезапное трехфазное кз синхронного генератора
Качания и динамическая устойчивость синхронной машины
Машины постоянного тока
ЭДС обмотки якоря и электромагнитный момент
Магнитное поле машины постоянного тока при нагрузке
Коммутация
Генераторы постоянного тока
Характеристики генераторов с самовозбуждением
Параллельная работа генераторов постоянного тока
Двигатели постоянного тока
Характеристики двигателя постоянного тока
Регулирование частоты вращения

 

 

 

 

 

 

 

 

 

Для получения генераторного режима асинхронной машины, работающей параллельно с мощной сетью (рис. 4.45), необходимо, как отмечалось в п. 4.1, приложить к валу внешний момент в направлении вращения ротора, так чтобы частота вращения превысила синхронную. При этом скольжение ротора становится отрицательным .
Анализ процессов в асинхронном генераторе можно выполнить с помощью уравнений векторных диаграмм и схемы замещения асинхронной машины, полученных в п. 4.4.


Генераторный режим асинхронной машины

Ток ротора

в генераторном режиме () будет содержать отрицательную активную составляющую


.
Реактивная составляющая

от знака скольжения не зависит. Она так же, как и в асинхронном двигателе, будет отставать от ЭДС  на угол 90° (рис. 4.46). Поэтому фаза  тока статора  по отношению к напряжению  будет >90°. Следовательно, в генераторном режиме асинхронная машина отдает в сеть активную мощность  и потребляет реактивную мощность .
Потребность в реактивной мощности является основным недостатком асинхронных генераторов, препятствующим их широкому распространению на электростанциях традиционного типа.


асинхронный генератор с фазным ротором

Однако в последние годы большой интерес проявляется к использованию в энергетике возобновляемых источников энергии, в частности энергии ветра. Одним из наиболее перспективных генераторов для ветроэлектростанций является асинхронный генератор с фазным ротором (рис. 4.47). В цепи ротора устанавливается преобразователь частоты, обеспечивающий питание обмотки ротора напряжением регулируемой частоты. Такая схема позволяет получить стабильное напряжение и частоту на выходе асинхронного генератора при широком диапазоне изменения частоты вращения ветроколеса.
Асинхронные генераторы находят применение также в автономных энергоустановках стационарного или передвижного типа. В этом случае ротор асинхронного генератора выполняется короткозамкнутым или в виде массивного стального цилиндра без обмоток. Такая конструкция ротора обеспечивает надежную работу генератора при высоких частотах вращения - до 12000 оборотов в минуту, что позволяет повысить мощность генератора, не увеличивая его габаритов. В качестве источника реактивной мощности асинхронного генератора используются конденсаторы (рис. 4.48), подключаемые к выводам статора.


В качестве источника реактивной мощности асинхронного генератора используются конденсаторы

Генератор работает в режиме самовозбуждения. При вращении ротора с номинальной частотой  в обмотке статора наводится ЭДС  за счет остаточного потока в машине (рис. 4.49). Под воздействием этой ЭДС по обмотке статора потечет емкостный ток, который усилит остаточный поток машины и создаст ЭДС . Этот процесс будет продолжаться до пересечения характеристики холостого хода (х.х.х.) генератора с вольтамперной характеристикой конденсаторов .
Точка установившегося режима определяется соотношением
.
Отсюда получаем выражение для емкости
.
Мощность конденсаторов равняется реактивной мощности генератора,
.
Если нагрузка генератора  имеет активно-индуктивный характер, то мощность конденсаторной батареи необходимо увеличить для покрытия еще и реактивной мощности нагрузки. Это делает генераторную установку (рис. 4.48) достаточно дорогой. К ее недостаткам следует также отнести сложность регулирования напряжения генератора при изменении нагрузки. В связи с этим асинхронные генераторы имеют ограниченное применение.



 
« Электрические аппараты и оборудование выше 1000В
электрические сети