6 ВЫБОР ТОКООГРАНИЧИВАЮЩИХ РЕАКТОРОВ
6.1 Расчетные условия для выбора и проверки токоограничивающих реакторов
Реакторы служат для ограничения токов К3 в электроустановках напряжением 6-10 кВ, а также позволяют поддерживать на шинах подстанции или электростанции определённый уровень напряжения при повреждениях за реакторами [14]. В электроустановках применяются как линейные, так и секционные реакторы. В качестве линейных реакторов могут применяться как одинарные, так и сдвоенные реакторы, схемы включения реакторов приведены на рисунке 6.1.
Рисунок 6.1 – Схемы включения линейных реакторов
Линейные реакторы широко применяются на электростанциях как для питания потребителей собственных нужд на ТЭЦ, так и питания потребителей промышленных предприятий. На подстанциях линейные реакторы применяются для питания потребителей.
Секционные реакторы применяются на ТЭЦ для ограничения тока К3 на шинах генераторного распределительного устройства напряжением 6-10 кВ.
Токоограничивающие реакторы выбираются по номинальному напряжению, номинальному току, номинальному индуктивному сопротивлению. Номинальное напряжение реактора выбирается таким образом, чтобы выполнялось условие
. (6.1)
Номинальный ток одинарного реактора или одной ветви сдвоенного реактора, используемого в качестве линейного, должен быть таким, чтобы выполнялось условие
. (6.2)
Номинальный ток секционного реактора должен соответствовать наибольшей мощности, передаваемой от секции к секции в следующих режимах: нормальном или аварийном, при отключении одного трансформатора связи или самого мощного генератора, подключенного к шинам ГРУ. Обычно принимают .
Индуктивное сопротивление линейного реактора определяется исходя из следующих двух условий: ограничения тока К3 до величины номинального тока отключения выключателя или тока термической стойкости кабеля
, присоединенного к сборным шинам ГРУ электростанции или подстанции. Сопротивление реактора должно быть таким, чтобы выполнялись условия
(6.3)
или
, (6.4)
где - сечение кабеля, присоединенного к шинам ГРУ электростанции или подстанции.
Из двух значений определяемых выражениями (6.3) и (6.4) следует выбрать меньшее значение.
Требуемое сопротивление цепи для ограничения тока К3 до величины равно
. (6.5)
Требуемое сопротивление реактора равно
, (6.6)
где - результирующее сопротивление цепи К3 до установки реактора, которое определяется по выражению
.
После расчета выбирают тип реактора с большим ближайшим индуктивным сопротивлением и рассчитывают действительное значение периодической составляющей тока К3 за реактором.
Сопротивление секционного реактора выбирается из условий наиболее эффективного ограничения токов КЗ [1,5]. Обычно сопротивление секционного реактора принимается таким, чтобы падение напряжения на реакторе при протекании по нему номинального тока было не более , т.е.
. (6.7)
Выбранный реактор необходимо проверить на электродинамическую и термическую стойкость при протекании через него тока КЗ.
Реактор будет электродинамически стойким, если выполняется условие
, (6.8)
где - ударный ток трехфазного КЗ за реактором;
- ток электродинамической стойкости реактора.
Проверка реактора на термическую стойкость проводится по условию
, (6.9)
где - расчетный импульс квадратичного тока при КЗ за реактором;
- допустимый импульс квадратичного тока КЗ для проверяемого реактора, который определяется по формулам (1.21) или (1.22).
Необходимо также определить потерю напряжения в реакторе в нормальном и утяжеленном режимах и остаточное напряжение
на шинах ГРУ электростанции или подстанции при КЗ за реактором.
Потеря напряжения в реакторе определяется по выражениям:
для одинарного реактора
, (6.10)
для сдвоенного реактора
, (6.11)
где – ток, протекающий через реактор;
- коэффициент связи сдвоенного реактора;
- номинальное напряжение установки, где используется реактор.
Допустимая потеря напряжения в нормальном режиме не должна превышать 1,5¸2,0%, а в утяжеленном режиме - 3¸4 %.
Остаточное напряжение на шинах генераторного распределительного устройства при КЗ за реактором определяется по формуле:
, (6.12)
где - периодическая составляющая трехфазного тока КЗ за реактором.
Остаточное напряжение на шинах ГРУ при КЗ за реактором должно быть не менее 65¸70 % от номинального значения.
6.2 Примеры выбора и проверки токоограничивающих реакторов
Пример 6.1 Выбрать групповой линейный реактор для ограничения тока КЗ в распределительной сети 10 кВ, присоединенной к сборным шинам ТЭЦ. Распределительная сеть состоит из шести кабельных линий сечением 3´150 мм2 каждая. Максимальный ток продолжительного режима работы для каждой линии . Ток КЗ на шинах ГРУ составляет
. На отходящих кабельных линиях установлены выключатели типа ВМП-10К с током отключения
. Полное время отключения КЗ
. Коэффициент мощности потребителя
.
Намечаем к установке сдвоенный реактор на номинальное напряжение 10кВ. К каждой ветви реактора подключено по три линии и поэтому ток каждой ветви составляет
Выбираем реактор на номинальный ток ветви 1000 А
.
Определяем результирующее сопротивление цепи КЗ при отсутствии реактора
.
Определяем допустимое значение тока КЗ в распределительной сети. Ток термической стойкости кабеля сечением 3´150 мм2 при полном времени отключения составляет в соответствии с (6.4)
,
где в соответствии с таблицей 4.2;
- для ветвей, защищенных реакторами с номинальным током 1000 A и выше, согласно таблице 1.1 .
В цепи кабельных линий установлены выключатели типа ВМП-10К с номинальным током отключения . Следовательно, параметры реактора определяются требованием термической стойкости кабеля.
Требуемое результирующее сопротивление цепи КЗ, исходя из допустимого значения тока КЗ 11,4 кА, должно быть не менее
.
Требуемое сопротивление реактора для ограничения тока КЗ
.
Выбираем окончательно реактор типа РБСГ-10-2x1000-0,45У3 с параметрами ,
,
.
Результирующее сопротивление цепи КЗ с учетом реактора
.
Фактическое значение периодической составляющей тока КЗ за реактором
.
Проверим выбранный реактор на электродинамическую и термическую стойкость:
,
т.е. реактор электродинамически стойкий.
Допустимое для реактора значение термического импульса при
определяем по выражению (1.22). Таким образом
т.е. выбранный реактор термически стойкий.
Определим потерю напряжения в реакторе по выражению (6.11)
что меньше допустимого значения 1,5¸2,0 %.
Остаточное напряжение на шинах ГРУ при КЗ за реактором согласно (6.12) составляет
,
что лежит в пределах нормы .
Таким образом, выбранный реактор удовлетворяет всем предъявляемым требованиям.
Пример 6.2 Выбрать тип сдвоенных реакторов на вторичной стороне понижающих трансформаторов типа ТД-40000/110/10,5. Трансформаторы работают раздельно. В распределительном устройстве ток КЗ не должен превышать 12 кА. Коэффициент аварийной перегрузки трансформатора при отключении второго трансформатора 1,25 .
Рисунок 6.2-Схема подстанции
Номинальное напряжение реактора
. Определим расчетный ток ветви сдвоенного реактора при отключении одного трансформатора.
.
Принимаем к установке реактор с номинальным током ветви .
Сопротивление реактора определим из условия ограничения тока КЗ до величины . За базисные величины принимаем номинальный ток и номинальное напряжение реактор.
Результирующее сопротивление цепи КЗ с учетом ограничения тока КЗ до значения равно
.
Требуемое сопротивление реактора для ограничения тока К3 равно
,
где .
Принимаем к установке сдвоенный реактор типа РБСД-10-2х1600-0,25У3 с параметрами
.
Результирующее сопротивление цепи К3 с учетом реактора равно
.
Фактическое значение периодической составляющей тока К3 за реактором равно
.
Таким образом, выбранный реактор удовлетворяет условию ограничению тока К3.
Пример 6.3 Для схемы ТЭЦ, представленной на рисунке 6.3, выбрать секционные реакторы и определить потери напряжения в них в нормальном режиме работы. К шинам ГРУ подключено 4 генератора мощностью по 63 МВт. Графики нагрузок генераторов и потребителей ровные: . Расход электроэнергии на собственные нужды составляет 10% от мощности станции. Коэффициент мощности генераторов и потребителей равен 0,8. Нагрузка по секциям распределена равномерно.
Рисунок 6.3 – Схема ТЭЦ
Рассчитаем мощности, протекающие через реакторы в нормальном режиме, при отключении одного генератора, при отключении одного трансформатора и при разрыве кольца.
В нормальном режиме работы через каждый секционный реактор протекает мощность
.
При отключении одного генератора через каждый секционный реактор протекает мощность
.
При отключении одного трансформатора, например T1, через каждый секционный реактор протекает мощность
,
.
При разрыве кольца, например, отключен реактор LR4, через секционные реакторы протекает мощность
,
.
Расчетным режимом является режим отключения одного трансформатора:
.
Принимаем к установке реактор типа РБГ-10-2500-0,14УЗс параметрами .
Ток через реакторы в нормальном режиме равен
.
Потеря напряжения в реакторе в нормальном режиме, согласно (6.10) равна
,
что меньше допустимого значения потерь.