Стартовая >> Архив >> Генерация >> Материалы ядерных энергетических установок

Анализ специфических свойств материалов при их выборе для ядерных реакторов - Материалы ядерных энергетических установок

Оглавление
Материалы ядерных энергетических установок
Ядерная энергия и материалы
Легководный реактор LWR
Тяжеловодный реактор HWR
Реактор типа LMFBR
Перспективы использования термоядерной энергии
Радионуклидное производство энергии и ее использование
Требования, предъявляемые к выбору ядерных материалов
Свойства реакторных материалов
Анализ специфических свойств материалов при их выборе для ядерных реакторов
Выбор материалов и анализ конструкции с помощью ЭВМ
Компоненты и материалы ядерных реакторов деления
Ядерные топливные материалы
Конструкционные материалы
Материалы органов регулирования, теплоносители
Материалы защиты, системы аварийной защиты
Атомная электростанция (с реактором деления)
Фундаментальные радиационные явления в материалах
Радиационное повреждение нейтронами
Влияние облучения на реакторные материалы
Влияние облучения на физические свойства материалов
Влияние облучения на механические свойства материалов
Влияние облучения на коррозию, свелинг
Отжиг радиационных повреждений, влияние облучения на свойства при низких температурах
Металлический уран
Коррозия урана
Сплавы урана
Влияние облучения на урановое топливо
Керамический уран
Диоксид урана
Радиационное распухание оксидного топлива
Радиационная ползучесть оксидного топлива
Выделение газообразных продуктов деления из оксидного топлива
Монокарбид урана
Нитрид, силицид и сульфиды урана
Коррозия керамического урана, техника безопасности
Плутоний
Металлические сплавы плутония
Керамические соединения плутония
Смешанное керамическое уран-плутониевое топливо
Коэффициент воспроизводства, избыточный коэффициент и время удвоения плутония
Радиационные эффекты плутония
Коррозионные эффекты плутония
Меры безопасности при работе с плутонием
Торий
Свойства тория
Получение и сплавы тория
Керамические соединения тория
Радиационные и коррозионные эффекты тория
Радиоактивный распад в торий-урановом топливном цикле
Конструкционные материалы: металлы
Конструкционные материалы: бериллий и его соединения
Конструкционные материалы: магний
Конструкционные материалы: алюминий
Конструкционные материалы: цирконий
Конструкционные материалы: нержавеющая сталь и никелевые сплавы
Конструкционные материалы: керамика и керметы
Влияние облучения на конструкционные материалы
Коррозия конструкционных материалов
Материалы замедлителя и отражателя
Графит
Материал бланкета
Материал теплоносителя
Материалы систем регулирования, защиты и аварийной защиты
Защита реактора
Системы аварийной зашиты реактора и используемые в них материалы
Материалы в топливных циклах, процессах обогащения и переработки топлива
Обогащение топлива
Переработка топлива
Материалы, используемые в процессах переработки отработавшего топлива
Переработка ядерного топлива
Топливные материалы, участвующие в U-Pu-топливном цикле
Тепловыделяющие элементы
Связующий материал твэлов
Материалы, применяемые при изготовлении твэлов
Каналы для теплоносителя и системы трубопроводов
Корпуса реакторов под давлением
Радиационные эффекты при работе материалов ядерного топлива и конструкционных материалов
Коррозия и трещины материалов твэлов, коррозия каналов теплоносителя
Образование коррозионных и усталостных трещин и течей в каналах для теплоносителей, трубопроводах
Материалы радионуклидных генераторов энергии и термоядерных реакторов
Радионуклидное топливо
Материалы оболочек, материалы и теплоносители радионуклидных генераторов
Концептуальные проекты термоядерных реакторов
Компоненты и материалы термоядерных реакторов
Материалы для изготовления магнитной системы и системы безопасности термоядерных реакторов
Взаимодействие материалов с первой стенкой термоядерного реактора
Материалы первой стенки термоядерного реактора и влияние на них облучения

В ходе проектирования и эксплуатации в любой отрасли техники к свойствам материалов предъявляются специфические требования. В ядерной технике специальные требования к материалам включают ядерные характеристики, наведенную радиоактивность, химические взаимодействия, взаимную диффузию и легкость переработки топлива.

  1. Ядерные свойства материалов. Нейтроны играют наиболее важную роль в ядерном реакторе деления. К ядерным свойствам относятся главным образом характеристики поглощения нейтронов при делении и при захвате и характеристики их рассеяния или столкновения. Вероятность поглощения или рассеяния нейтронов описывается сечением поглощения и сечением рассеяния соответственно. К ядерным свойствам материалов различных элементов ядерных реакторов деления, т.е. к материалам топлива, конструкционным материалам, материалам замедлителя, отражателя, зоны воспроизводства, теплоносителя, защиты и системы регулирования, предъявляются разные требования. Например, в целях экономии нейтронов конструкционные материалы должны иметь небольшое сечение поглощения нейтронов.
  2. Наведенная радиоактивность. Поглощение тепловых или быстрых нейтронов материалом ядерного реактора может привести к ядерным превращениям и образованию новых (стабильных или радиоактивных) нуклидов. Излучение (а- и бета-частиц, гамма-квантов и т.д.), обусловленное ядерными превращениями и образованием нуклидов, определяется термином наведенная радиоактивность. Желательно, чтобы наведенная радиоактивность характеризовалась небольшим периодом полураспада и низкой энергией излучения. В случае образования долгоживущих радиоактивных нуклидов с высокой энергией гамма-излучеиия [1] могут возникнуть проблемы при обслуживании, ремонте и проверке оборудования и выполнении экспериментальных исследований в условиях интенсивного излучения.

Наведенная радиоактивность может приводить к выделению тепла при распаде (в дополнение к теплу, выделяющемуся в процессе облучения) в корпусе ядерного реактора деления и в стенке вакуумной камеры или в первой стенке термоядерного реактора. Тепло, выделяющееся при распаде, можно использовать в качестве полезного источника в радионуклидном генераторе энергии, однако для первой стенки термоядерного реактора оно нежелательно.

  1. Радиационная стабильность, химическое взаимодействие и взаимная диффузия. Осколки деления и нейтроны оказывают наибольшее влияние на изменение свойств материалов в процессе их облучения в ядерном реакторе. Осколки деления обладают очень высокой энергией, но малой длиной пробега, и поэтому физические изменения, обусловленные действием осколков деления, сосредоточены главным образом в материале ядерного топлива. В результате большинство радиационных эффектов или радиационных повреждений в реакторных материалах возникает вследствие бомбардировки материалов нейтронами и особенно быстрыми нейтронами.

К основным радиационным эффектам в топливных материалах относятся радиационный рост, рост при термическом циклировании, радиационное распухание и радиационная ползучесть [2]. Что касается конструкционных материалов, то влияние облучения на них в основном проявляется в растрескивании и усталости при термическом циклировании, радиационном распухании и радиационной ползучести [3]. Радиационное распухание, радиационная ползучесть, а также растрескивание и усталость при термическом циклировании могут лимитировать радиационную стабильность топливных и конструкционных материалов [4-15].
В процессе послереакторного исследования образцов твэлов, облученных при высоких температурах (температура наружной поверхности оболочки более 500 °С, температура оксидного топлива более 1500 °С), часто наблюдаются химические взаимодействия и взаимная диффузия между топливом и оболочкой. При наличии высоких кислородных потенциалов, адсорбированных газовых примесей и газообразных продуктов деления оксидное топливо низкой плотности более чувствительно к химическому взаимодействию и взаимной диффузии между топливом и оболочкой, чем оксидное топливо высокой плотности при тех же или эквивалентных условиях эксплуатации. Этот факт может иметь существенное значение, когда депо касается коэффициентов теплопроводности или теплопередачи в зазоре между топливом и оболочкой. Такую зависимость можно объяснить тем, что межкристаллитное взаимодействие, по-видимому, связано с механизмом переноса в паровой фазе, скорость которого увеличивается с повышением температуры топлива и увеличением числа открытых пор. Продукты деления (Cs, Cd, Mo, Zr и тд.) диффундируют из внешней зоны топливных таблеток в прилегающую оболочку, тогда как некоторые элементы материала оболочки (аустенитная нержавеющая сталь для твэлов быстрых реакторов-размножителей с жидкометаллическим теплоносителем) диффундируют к поверхности топливных таблеток. Аналогичное химическое взаимодействие и взаимную диффузию можно обнаружить и в облученных твэлах исследовательских и легководных энергетических реакторов.
Химические взаимодействия и взаимная диффузия, как правило, приводят к ухудшению конструкционной прочности и радиационной стабильности твэлов, которые в течение всего срока службы облучаются при высоких температурах.

  1. Возможность переработки топлива. Ядерное топливо, используемое в исследовательском или энергетическом реакторе, имеет ограниченный срок службы и требует химической переработки. Основная цепь переработки заключается в извлечении ценных делящихся материалов — урана и плутония из отработавших твэпов. Отработавшие твэлы требуют химической переработки по следующим причинам.
  2. Реактивность реактора падает и становится слишком низкой из-за сгорания делящегося материала и накопления продуктов деления, поглощающих нейтроны.

Твэл постепенно повреждается под действием коррозионных, термических, радиационных и механических эффектов (радиационное распухание и радиационная ползучесть). Переработка отработавшего топлива экстракционными методами используется в широких масштабах для ядерных реакторов деления, поскольку она позволяет легко извлекать такие ценные материалы, как уран и плутоний (уран-плутониевый топливный цикл). Поэтому к материалам топлива и оболочки предъявляются требования, касающиеся легкости переработки топлива.



 
« Магнитный фильтр-сепаратор в схеме очистки производственного конденсата   Метод определения параметров тепловой изоляции паротурбинных блоков ТЭС »
электрические сети