Общие сведения об электрической дуге переменного тока
Отключение электрических цепей коммутационными аппаратами сопровождается возникновением и последующим гашением электрической дуги. Процесс гашения дуги чрезвычайно труден, так как всякая электрическая цепь обладает индуктивностью и емкостью С (емкость проводов, токоведущих частей и пр.). Когда по такой цепи проходит ток, то в ее индуктивности запасается электромагнитная энергия WэM = 0,5PL. Если при размыкании цепи переменного тока ток принудительно прерывается ранее естественного перехода его через нуль, например при значении I обр, то освобождается запасенная в ней электромагнитная энергия Wэм = 0,5Lioбp. Эта энергия не может мгновенно исчезнуть, а будет плавно, без скачков уменьшаться, переходя в другой вид энергии, например в энергию электростатического поля WэC = 0,5CU2, и расходоваться на заряд емкости С и нагрев проводников. При этом напряжение на емкости, равное U— I LiC, может оказаться очень большим. Например, если в цепи 110 кВ произойдет принудительное прерывание тока при его значении ioбp =1000 А и при L — 0,022 Гн и С = 4- 10-9 Ф, то напряжение на емкости будет V = 1000= 2,3- 103 кВ. Это напряжение вызовет пробой изоляции и нарушение работы цепи. В действительности не вся электромагнитная энергия, запасенная в индуктивности, переходит в электростатическую. Часть электромагнитной энергии переходит в тепловую энергию, и результирующее напряжение на индуктивности будет меньше того, что следует из примера, приведенного выше.
Для успешного отключения цепи постоянного тока без существенного повышения напряжения электромагнитная энергия, запасенная в ней, должна быть рассеяна в дугогасительном (коммутирующем) устройстве аппарата. В коммутирующих аппаратах таким элементом является электрическая дуга, возникающая при их отключении. Электромагнитная энергия цепи преобразуется в дуге в тепловую энергию, которая в процессе отключения рассеивается в окружающую среду. Таким образом, дуга и окружающая ее среда являются энергопоглотительным элементом аппарата.
Количество электромагнитной энергии, запасенное в цепи переменного тока, кроме как от 1 и L, зависит еще и от момента прерывания тока (в начале полупериода, в середине или близко к концу) и может составлять несколько сотен или тысяч джоулей. В конце каждого полупериода ток становится равным нулю. Если контакты аппарата мгновенно развести на необходимое расстояние непосредственно при прохождении тока через нуль, то дуга на контактах не возникает. Такое отключение называется идеальным — синхронным (синхронизированным) отключением цепей переменного тока. Мгновенное отключение практически невозможно осуществить. Поэтому под синхронным отключением понимают отключение, производимое непосредственно перед переходом тока через нуль, например за 1 мс. При таком времени ток, проходящий через дугу, будет составлять всего лишь 0,1—0,05 своей амплитуды. Энергия, выделяющаяся при этом в дуге, будет в 20—100 раз меньше энергии, которая выделилась бы при отключении амплитудного тока. Хотя принцип синхронного отключения является весьма прогрессивным, однако при создании выключателей высокого напряжения он пока еще не получил
сколько-нибудь широкого практического применения из-за большой сложности и недостаточной надежности таких аппаратов.
Плазма.
Электрическая дуга является одним из видов разряда в газах или парах, который характеризуется большой плотностью тока, катодным падением напряжения порядка минимального потенциала возбуждения газа, небольшим падением напряжения в стволе дуги и высокой его температурой. В дуге одновременно проходят как электрические, так и тепловые процессы. Тепловые процессы в дуге и теплообмен между дугой и окружающей средой играют очень большую роль и накладывают свой отпечаток на электрические процессы в дуге. Электрическая дуга визуально представляет собой светящийся канал, заполненный плазмой. Плазмой называется газ, в котором значительная часть атомов и молекул ионизирована и плотность электронов па и положительных ионов, т. е. число их в единице объема, настолько велика, что даже небольшое изменение пэ по отношению к па оказывается невозможным из-за сильных электрических полей, возникающих между электронами и ионами при нарушении равенства между пэ и па. Область, занимаемая плазмой, должна значительно превосходить так называемый дебаевский радиус где Θэ — температура электронов. Например, при Θа = 12000 К и — 1015 1/см3 гд = 1,73· 10-5 см.
При значительном отклонении плотности электронов пэ от плотности положительных ионов в плазме возникает электрическое поле, которое способно выталкивать избыточные заряженные частицы в ту область, где их меньше. Таким образом, в плазме не наблюдается разницы между плотностями положительно и отрицательно заряженных частиц в условиях их непрерывного возникновения и исчезновения. Это свойство называется квазинейтральностью. Плазма состоит из электронов, положительных ионов и нейтральных молекул и атомов, равномерно перемешанных между собой, но неодинаково нагретых. Из-за различия в средней кинетической энергии этих частиц в плазме при низком давлении вместо одной общей температуры следует различать три: электронную, ионную и атомную.
Отличительное свойство плазмы заключается в том, что траектории движения заряженных частиц в ней отличаются от тех, какие свойственны обычному тепловому движению, когда при соударении частиц резко изменяется направление их движения. В плазме изменение траектории движения заряженных частиц происходит плавно, под воздействием электростатических сил, возникающих между противоположно заряженными частицами. Понятие о длине свободного пробега электрона λ3 в плазме отличается от обычно принятого — от столкновения до столкновения.
Свойства плазмы в электрической дуге зависят от давления. При низких давлениях длина свободного пробега электронов относительно большая и они приобретают в электрическом поле значительную кинетическую энергию, которая существенно превышает кинетическую энергию положительных ионов и нейтральных частиц газа. Кинетическая энергия, которой обладает электрон, характеризуется температурой электронов в плазме. Эта температура отличается от температуры плазмы.
При низком давлении температура электронов в плазме достигает тысяч и десятков тысяч градусов, в то время как температура плазмы может составлять всего лишь несколько сотен градусов. С увеличением давления температура электронов уменьшается, а температура плазмы повышается. При атмосферном давлении эти температуры становятся примерно одинаковыми. В соответствии с этим различают: 1) дугу высокого давления, горящую в газе при давлении от атмосферного и более; 2) дугу низкого давления, горящую в газе при давлении, меньшем атмосферного; 3) дугу вакуумную, горящую в газе при давлении, меньшем 0,01 Па.
В плазме непрерывно совершаются процессы возбуждения, ионизации и деионизации ионов, атомов и молекул.
Возбуждение атома.
Упрощенно атом можно представить в виде ядра, несущего положительный электрический заряд, и электронов, вращающихся вокруг ядра по определенным орбитам, радиусы которых различны. На каждой орбите может находиться один или несколько электронов. Каждый атом имеет определенную внутреннюю энергию, определяемую числом электронов и их расположением по орбитам. Энергия атома минимальна, когда электроны находятся на орбитах, расположенных наиболее близко к ядру. При определенных условиях электрон может перейти с одной орбиты на другую. Если электрон переходит с орбиты, ближайшей к ядру, на орбиту, более удаленную от него, то энергия атома увеличивается, и наоборот. Энергия атома при переходе электрона с одной орбиты на другую может изменяться только на строго определенное, дискретное значение. Переход электрона на более удаленную орбиту называется возбуждением атома. В возбужденном состоянии атом может оставаться лишь небольшой промежуток времени (менее 10-8 с). Затем электрон возвращается в первоначальное положение, выделяя при этом энергию в виде фотона. Возбужденный атом электрически нейтрален.
Для возбуждения атома необходимо затратить некоторое количество энергии, называемой энергией возбуждения, измеряемое в электрон-вольтах (табл. 2-1). Один электрон-вольт равен энергии, которую необходимо затратить на перемещение одного электрона против сил электрического поля с разностью потенциалов одни вольт (1 эВ = 1,6· 10-13 Дж). Часто употребляется термин «потенциал возбуждения», численно равный энергии возбуждения, но для простоты измеряемый в вольтах.
Ионизация — процесс возникновения в промежутке между электродами самостоятельных заряженных частиц (электронов и положительных ионов). Основными видами ионизации дугового промежутка АВН являются термоэлектронная и автоэлектронная эмиссии и ионизация столкновением.
Термоэлектронная эмиссия.
Атомы в металле расположены так близко друг к другу, что орбиты внешних электронов перекрываются и электроны становятся способными перемещаться от одного атома к другому. Узлы кристаллической решетки металла образованы положительными ионами, создающими электрическое поле. Потенциал этого поля положительный и не выходит за пределы металла. Внутри кристаллической решетки находятся свободные электроны, осуществляющие перенос тока и теплоты в металле. Положительное поле ионов препятствует выходу электронов за пределы металла.
Таблица 1. Характеристики некоторых газов и паров металлов
Примечание. В скобках приведены вторичные потенциалы возбуждения и ионизации.
Для выхода электронов из металла в окружающее пространство необходимо, чтобы они преодолели силу взаимодействия с полем положительных ионов, т, е. прошли через потенциальный барьер на поверхности металла. На преодоление потенциального барьера должна быть затрачена определенная работа, называемая работой выхода, которая зависит от рода металла и для каждого металла является постоянной величиной, не зависящей от его температуры (табл. 1). Работа выхода уменьшается при наличии на поверхности металла адсорбированной пленки газа, примесей некоторых других металлов, диффундирующих на поверхность, различных загрязнений и т. п.
При нагреве металла скорости свободных электронов увеличиваются, и если их кинетическая энергия при подходе к поверхности металла окажется больше работы выхода, то электроны могут выйти из металла. Чем меньше работа выхода, тем интенсивнее выход электронов из металла. Попадая в область дуги, такие электроны увеличивают ее проводимость.
Ионизация столкновением — процесс распада атома, находящегося в газе, на положительный ион и электрон в результате столкновения атома с быстродвижущимся электроном или же столкновения двух атомов (первичная ионизация). При последующих столкновениях образовавшегося положительного иона с другим электроном из этого иона могут быть выбиты еще один или несколько электронов (вторичная ионизация). На ионизацию газа затрачивается определенная энергия, называемая энергией (работой или потенциалом) ионизации и измеряемая в электрон-вольтах (в вольтах). Не значение см. в табл. 1. На вторичную ионизацию затрачивается значительно большая энергия, чем на первичную. Чем больше энергия ионизации газа, тем труднее поддержание в нем дуги и легче ее гашение при размыкании цепи. Ионизация газа может происходить н в том случае, когда энергия электрона меньше энергии ионизации, например при соударении электрона с возбужденным атомом. Такая ионизация называется ступенчатой. На ступенчатую ионизацию затрачивается энергия, равная разности энергии ионизации и энергии возбуждения. Приводим ее значения: 8; 5; 15,6 и 15,8 эВ соответственно для Н2, Ο1, Ν2 и SF6. Примесь в газе паров металла значительно увеличивает степень ионизации газа.
Ударная ионизация — процесс ионизации газа, обусловленный соударением электронов, ускоряемых электрическим полем, с атомами или ионами. В результате такого соударения в газе появляются новые ионизированные частицы. Электрическое поле сильно увеличивает скорость движения электронов по сравнению с той, какую они имеют при данной температуре дуги, но без электрического поля. Кроме того, движение электрона не будет хаотическим, а определится конфигурацией электрического поля. Таким образом, направленное движение накладывается на хаотическое. Если энергия электронов в момент соударения окажется меньше энергии ионизации, то ионизация газа практически происходить не будет (если пренебрегать ступенчатой ионизацией). С увеличением энергии электронов вероятность ионизации соударением возрастает, достигая максимума при энергии, равной для большинства газов приблизительно 100 эВ. При дальнейшем увеличении энергии электронов вероятность ударной ионизации постепенно уменьшается, так как электроны очень быстро проходят мимо атомов и процесс ионизации на успевает совершиться.