Стартовая >> Оборудование >> Эл. машины >> Наладка электрических машин электроприводов

Измерение сопротивления и контроль изоляции обмоток - Наладка электрических машин электроприводов

Оглавление
Наладка электрических машин электроприводов
Введение
Общие указания по наладке
Основные достоинства и недостатки систем управления электрических машин
Подбор технической документации, подготовка аппаратуры и рабочего места
Внешний осмотр, проверка механической части и сведения о монтаже
Измерение сопротивления и контроль изоляции обмоток
Проверка изоляции подшипников
Измерение сопротивлений обмоток при постоянном токе
Испытание электрической прочности изоляции обмоток повышенным напряжением
Пуск двигателя
Проверка механической части и правильности установки щеток машин постоянного тока
Измерение сопротивлений обмоток  машин постоянного тока
Проверка схемы соединений обмоток  машин постоянного тока
Подъем напряжения генератора постоянного тока
Пуск двигателя постоянного тока
Снятие характеристик при холостом ходе машин постоянного тока
Снятие характеристик хх и кз генератора
Испытание генераторов под нагрузкой и графическое построение характеристик
Испытание и снятие характеристик двигателей постоянного тока при различном виде нагрузок
Наладочные работы при неподвижном состоянии машины переменного тока
Пуск и снятие характеристик асинхронных двигателей
Снятие характеристик синхронных генераторов
Пуск и снятие характеристик синхронных двигателей
Область применения и перспективы развития управляющих и измеряющих машин
Электромашинные усилители
Тахогенераторы
Сельсины
Исполнительные микродвигатели
Осциллографирование токов и напряжений
Осциллографирование скорости и ускорений

Величина сопротивления изоляции обмоток машин является одним из основных показателей, определяющих допустимость их включения на рабочее напряжение. Изоляция обмоток измеряется перед пробным пуском машины, а затем периодически в ходе нормальной эксплуатации; кроме того, изоляция должна контролироваться после длительных остановок и при каждом аварийном отключении привода.
Во время первоначальной наладки машин постоянного тока желательно в отдельности проверить изоляцию якоря, дополнительных полюсов и обмоток возбуждения; у машин переменного тока измеряется изоляция обмоток каждой фазы по отношению к заземленному корпусу и соединенным с ним обмоткам других фаз. В последующем изоляция может проверяться без отключения обмоток друг от друга совместно с подводящими.

Проводами; обмотки отключаются от схемы только при необходимости отыскания мест с пониженной изоляцией.
Для измерения изоляции применяются мегомметры различных напряжений [Л. 26] на 250, 500, 1 000 и 2 500 в. Процесс измерения состоит в следующем.
Зажим экрана мегомметра присоединяется к корпусу машины; от второго зажима гибкий провод с надежной изоляцией (типа «магнето») подводится к выводу обмотки, коллектору или иному испытуемому элементу машины. Желательно на свободных концах проводов от мегомметра иметь ручки из изоляционного материала со встроенными медными штырями или зажимами. Ручку мегомметра следует вращать со скоростью примерно 120 об/мин. При испытании небольших машин, имеющих незначительную емкость, стрелка прибора быстро устанавливается в положение, соответствующее сопротивлению изоляции, и отсчет можно производить уже через несколько секунд с начала вращения индуктора. При измерении изоляции крупных машин показания мегомметра постепенно увеличиваются и их принято отмечать через 15 и 60 сек (см. ниже) с начала вращения рукоятки. После окончания испытаний сохранившийся на обмотке потенциал высокого напряжения следует снять путем ее заземления на 1—2 мин. Заземляющий проводник сначала надежно присоединяется к корпусу машины, а затем другим концом подводится к выводу обмотки.
При пользовании мегомметром необходимо соблюдать установленные правила техники безопасности [Л. 19, 26]; особую осторожность следует проявлять при испытании изоляции обмоток без отсоединения подводящих проводов, ибо в этом случае возможно возникновение напряжения на удаленных участках, где работают люди.
Измерение изоляции обмоток мегомметром считается одним из основных контрольных испытаний. Однако для наиболее распространенных машин переменного тока напряжением до 380 в и постоянного тока напряжением 220 в Правилах устройства электроустановок (ПУЭ) и в Правилах технической эксплуатации (ПТЭ) отсутствуют четкие нормы, по которым можно было бы судить о том, что полученная величина сопротивления изоляции является допустимой. 

В ГОСТ 183-66 указано, что сопротивление изоляции машин всех типов должно быть не менее 1 МОм на 1 кВ номинального напряжения  машины.
Во время наладки нормы контроля изоляции должны согласовываться с последними инструкциями и действующими правилами [Л. 9, 19, 25, 26]. При испытании больших (более 150 кВт) и высоковольтных машин желательно получить рекомендации от заводов-изготовителей.

Таблица 1-5
Допустимые сопротивления изоляции  высоковольтных машин переменного тока, МОм

Величину сопротивления изоляции желательно измерять при нагретых машинах; следует иметь в виду, что замеры, выполненные при температуре ниже 10° С, совершенно не показательны.
Таблица 1-6
Допустимые сопротивления изоляции R,e машин постоянного тока, МОм

Сопротивление изоляции машины резко снижается по мере ее нагревания; степень снижения зависит от сорта изоляционных материалов, сорта применяемого при пропитке обмоток компаунда и конструктивных особенностей.

В некоторых справочниках для сравнения с нормами полученные значения сопротивления изоляции рекомендуется делить на два на каждые 20° С, недостающие до максимальной рабочей температуры.
Наименьшие допустимые (нормируемые) величины сопротивлений изоляции (R-60) высоковольтных машин переменного тока приведены в табл. 1-5, машин постоянного тока — в табл. 1-6.
Во время наладочных работ были собраны опытные данные, по которым сопротивление изоляции зависит от температуры в еще большей степени, чем указано в табл. 1-5 и 1-6.

В ответственных случаях следует произвести в порядке контроля нагревание машины до рабочей температуры и измерить сопротивление изоляции [Л. 9, 14, 27].
По опыту наладки нового, вводимого в эксплуатацию оборудования сопротивление изоляции машин, измеренное при температуре около 20° С, как правило, значительно превышает 1 МОм и лежит в пределах от 5 до 100 МОм.
Падение сопротивления изоляции обмоток ниже указанных значений вызывается разными причинами: проникновением в толщу изоляции влаги, поверхностной влажностью или оседанием токопроводящей пыли на выводах, обмотках и коллекторе машины.
В этих случаях рекомендуется произвести следующее:
а)       продуть машину и почистить салфетками выводы обмоток, торец коллектора, изоляционные детали щеткодержателей; произвести повторное измерение изоляции;
б)       если окажется, что очистка деталей не помогла, произвести поверхностную сушку обмоток и их выводов с помощью воздуходувки, а затем провести контрольное измерение изоляции.

У машин, находившихся в длительной эксплуатации, причиной низкой величины сопротивления изоляции может явиться попадание токопроводящей пыли вместе с маслом в обмотку или изоляционные детали, что не удается выправить продувкой и протиркой.
Для того чтобы отличить такое повреждение изоляции от общей увлажненности обмотки, следует произвести измерение сопротивления изоляции мостиком Уитстона при двух направлениях тока в контролируемой цепи. Если низкое сопротивление изоляции вызывается токопроводящей пылью, то мостик при обоих измерениях покажет одинаковые результаты. При неодинаковых показаниях наиболее вероятной причиной можно считать проникновение в обмотку влаги и образование гальванической э. д. с., которая и создает разные показания при измерении мостиком. Для повышения сопротивления изоляции необходимо удалить попавшую в машину вместе с маслом пыль путем промывки изоляции ксилолом, толуолом или иным сильным растворителем. Данная операция должна выполняться квалифицированным персоналом и, как правило, требует полной разборки машины [Л. 11, 14].
Как правило, электрические машины мощностью до 100 кВт и напряжением до 380 в включаются без сушки, даже в тех случаях, когда их сопротивление изоляции менее 1 МОм. Из практики наладки и эксплуатации известно, что асинхронные двигатели вспомогательных приводов, включающиеся иногда при изоляции 100 ком и ниже, в ходе работы постепенно подсушивались и затем служили много лет безотказно. Однако включение при пониженной величине сопротивления изоляции машин, не прошедших испытания повышенным напряжением, допустимо только в тех случаях, когда имеются запасные машины и стоимость подвергаемой риску машины несравненно ниже технико-экономических потерь из-за простоев оборудования.
Показания мегомметра зависят от длительности приложения напряжения к обмоткам. В упрощенной форме это явление можно объяснить следующим образом: при неувлажненной изоляции во время подачи напряжения емкость машины постепенно заряжается, ток зарядки (ток утечки) снижается и мегомметр показывает увеличение сопротивления изоляции (рис. 1-23,а). В случае увлажненной изоляции и при наличии каких-либо токопроводящих дорожек (например, по слою пыли или по каналу пробоя) показания мегомметра быстро устанавливаются и перестают возрастать.
Отношение показаний мегомметра после 60-секундного приложения напряжения к показаниям 15-секундного замера называется коэффициентом абсорбции Ка=R60/R15. Эта величина позволяет более полно оценить фактическое состояние изоляции и нормируется в пределах    1,1       1,3.

Рис. 1-23. Показания мегомметра и данные испытаний изоляции повышенным напряжением.
а—зависимость сопротивления изоляции RB3 от времени ( приложения напряжения мегомметра; б — зависимость коэффициента абсорбции Ка от температуры испытуемой машины; в — примерные кривые зависимости токов утечки /у я сопротивления изоляции /?из электрических машин от приложенного выпрямленного напряжения £/и/Г/н; 1с — характеристики высоковольтных крупных машин при сухой (неувлажпенной) изоляции; 1е — то же, что /с, ио при влажной изоляции; 2с, 2в — характеристики крупных машин напряжением до 800 в; Зс, Зв — характеристики машин средней и малой мощности напряжением 380 в ,(при переменном токе) и 220 в (при постоянном токе).

 Вместе с тем следует учесть, что величина Ка даже при хорошем состоянии изоляции в значительной степени зависит от температуры машин и вида примененных изоляционных материалов. Пользуясь материалами некоторых справочников и обобщая опыт многочисленных замеров, зависимость Ка=f(τoС) можно характеризовать кривыми, приведенными на рис. 1-23,б.
В том случае, когда при проверке машины высокого напряжения мегомметр показывает пониженное сопротивление изоляции (менее 1 МОм на 1 кВ) и коэффициент абсорбции ниже 1,2, перед наладчиком возникает ответственная задача: допустимо ли подвергнуть машину испытанию повышенным напряжением, можно ли разрешить ее включение на рабочее напряжение или сначала необходимо произвести тщательную сушку обмоток.
В подобных затруднительных случаях оценку состояния изоляции можно провести по характеру роста тока утечки при постепенном увеличении испытательного выпрямленного напряжения. Для этой цели можно использовать кенотронный аппарат, присоединяя его попеременно к каждой испытуемой обмотке и определяя токи утечки при подъеме испытательного напряжения по ступеням (0,5—1—1,5—2—2,5 )Uн. На каждой ступени напряжения необходимо делать выдержку в течение 1 мин и, записав величину тока утечки (в конце выдержки), отключить обмотку от трансформатора. Затем следует произвести разрядку испытуемой обмотки на корпус, сделать выдержку около 2 мин и испытуемое напряжение повысить вновь, но уже до более высокой ступени.
В процессе испытания следует составить график зависимости токов утечки и сопротивления изоляции от испытательного напряжения. Последнее определяется из отношения Rиз=Uн/Iу в/мка. Если на какой-либо ступени сопротивление изоляции снизится по сравнению с результатом предыдущего измерения более чем на 30%, дальнейшее повышение напряжения следует производить более плавно (например, по 0,25Uн). В тех случаях, когда при дальнейшем испытании величина сопротивления изоляции снизится в 3—4 раза по сравнению с величиной, полученной при 0,5 Uн, изоляцию надо считать недопустимо влажной.  Такая машина должна быть подвергнута сушке. На рис. 1-23,в в качестве примера представлены экспериментальные кривые токов утечки Iу и характеристики сопротивления изоляции Rиз, полученные при испытании пяти крупных электрических машин. Машины с соответствующими кривыми I, II и III можно считать выдержавшими испытание; машины с кривыми IV и V нуждаются в сушке.
Сушка машин производится различными методами, описанными в пособиях по монтажу [Л. 11, 13 и др.]. Наиболее часто монтажные организации сушат машины методом наружного обогрева с помощью воздуходувок или грелок. При этом ближайшие к источнику тепла части машины не должны нагреваться более 80— 100° С. Однако такой способ сушки мало экономичен и не всегда дает результаты, так как машина нагревается неравномерно и в отдельных частях обмотки влага остается «закупоренной».
Широко применяется индуктивный метод сушки, не связанный с прохождением токов в обмотках; под действием вихревых токов тепло выделяется в корпусе, на валу и в остальных массивных частях машины. Во время нагревания машины сопротивление изоляции сначала снижается, а затем по мере удаления влаги постепенно повышается и, наконец, устанавливается примерно постоянным.
При прогревании до температуры 75—небольшие машины высушиваются обычно за 15—20 ч, средние— за двое суток, а крупные —за пять-шесть суток. Однако наблюдались случаи, когда сушка крупных машин высокого напряжения в течение 10—12 суток при 80° С не давала результатов. Причиной этого являлась закупорка влаги между слоями пропитанной изоляции и токоведущими частями обмоток. Опыт показал, что последующий подъем температуры при прогревании до 95—100° С позволил удалить оставшуюся влагу за 10— 15 ч.
У машин мощностью до 100 кВт сушку, как правило, можно прекращать, когда сопротивление изоляции обмоток, нагретых до 60—70° С, достигает 0,2—0,5 МОм и держится примерно неизменным 1—2 ч.



 
« Наименьшие номинальные мощности трехфазных асинхронных электродвигателей с короткозамкнутым и фазным роторами напряжением выше 1 кВ   Намагничивание машин постоянного тока »
электрические сети